Aaenmouritzen8584

Z Iurium Wiki

Nosocomial bloodstream infection (nBSI) is an important clinical concern among COVID-19 hospitalised patients. It can cause sepsis and septic shock leading to high morbidity, mortality, and the emergence of antibiotic resistance. The aim of this case-control study is to identify the risk factors associated with the nBSI development in COVID-19 hospitalised patients and its incidence.

A retrospective case-control study will be performed. Cases will include nBSI episodes of adult patients (≥18 years) admitted to Hospital Universitari Germans Trias i Pujol, Barcelona, Spain, from April to December 2020 with a diagnosis of SARS-CoV-2 pneumonia. Patients transferred from other hospitals will be excluded. Controls will include hospitalisation episodes of COVID-19 patients without nBSI. We will recruit a minimum of 74 nBSI episodes (cases) and 74 controls (according to sample size calculation). We will collect data on sociodemographics, clinical status at admission, hospital admission, in-hospital mortality, and exposure data (use of antivirals, glucocorticoids or immunomodulatory agents, length of hospitalisation, and use of medical devices such as intravenous catheters). A bivariate and a subsequent multivariate regression analysis will be performed to assess the independent effect of the associated risk factors after adjusting for confounders. The nBSI incidence rate will be estimated according to the number of nBSI episodes in admitted COVID-19 patients among the total person-month of follow-up.

The protocol of this study was approved by the Ethical Committee for Drug Investigation of the Hospital Universitari Germans Trias i Pujol. The results of this case-control study will be published in a peer reviewed journal.

The protocol of this study was approved by the Ethical Committee for Drug Investigation of the Hospital Universitari Germans Trias i Pujol. The results of this case-control study will be published in a peer reviewed journal.Clinical research conducted to Good Clinical Practice (GCP) standards is increasingly being undertaken in resource-constrained low-income and middle-income countries (LMICs) settings. This presents unique challenges that differ from those faced in high-income country (HIC) contexts, due to a dearth of infrastructure and unique socio-cultural contexts. Field experiences by research teams working in these LMIC contexts are thus critical to advancing knowledge on successful research conduct in these settings. The Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine has operated in The Gambia, a resource-constrained LMIC for over 70 years and has developed numerous research support platforms and systems. The unit was the lead clinical collaborator in a recently completed Expanded Program on Immunization Consortium (EPIC) study, involving a multicountry collaboration across five countries including the USA, Canada, Belgium, Papua New Guinea and The Gambia. The EPIC study recruited and completed follow-up of 720 newborn infants over 2 years. In this paper, we provide in-depth field experience covering challenges faced by the Gambian EPIC team in the conduct of this study. We also detail some reflections on these challenges. Our findings are relevant to the international research community as they highlight practical day-to-day challenges in conducting GCP standard clinical research in resource-constrained LMIC contexts. They also provide insights on how study processes can be adapted early during research planning to mitigate challenges.A rapid isothermal method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, is reported. The procedure uses an unprecedented reverse transcription-free (RTF) approach for converting genomic RNA into DNA. This involves the formation of an RNA/DNA heteroduplex whose selective cleavage generates a short DNA trigger strand, which is then rapidly amplified using the exponential amplification reaction (EXPAR). Deploying the RNA-to-DNA conversion and amplification stages of the RTF-EXPAR assay in a single step results in the detection, via a fluorescence read-out, of single figure copy numbers per microliter of SARS-CoV-2 RNA in under 10 min. In direct three-way comparison studies, the assay has been found to be faster than both RT-qPCR and reverse transcription loop-mediated isothermal amplification (RT-LAMP), while being just as sensitive. The assay protocol involves the use of standard laboratory equipment and is readily adaptable for the detection of other RNA-based pathogens.

The minimally invasive procedures used in the diagnostic workup of patients with advanced non-small cell lung cancer (NSCLC) often provide poor yields of pathological material suitable for molecular analyses. Not infrequently, the DNA yield from small biopsies/cytological samples is insufficient for the assessment of genomic biomarkers that inform personalised therapies. The Idylla

mutation test (IEMT) has been specifically designed to process formalin-fixed paraffin-embedded sections without requiring preliminary DNA extraction.This study aims to evaluate the diagnostic accuracy of IEMT when used to analyse archival histopathology material. More specifically, our objective was to establish whether or not different staining procedures could affect assay performance.

Twenty NSCLC samples were selected accordingly to

mutational status. To mimic archived stained material, sections were subjected to H&E staining, fluorescent in situ hybridisation analyses or immunodetection by immunohistochemistry before being processed for IEMT.

Parallel assessment of

mutational status by IEMT on stained sections and next-generation sequencing on DNA yielded a concordant result in 50 out of 60 tests (83.3%). The discoloration of H&E of the archived sample was found to be the optimal procedure to highlight all the actionable alterations of

.

IEMT can provide remarkable diagnostic accuracy for the assessment of

mutational status also when the only source of pathological material available for molecular analyses is represented by H&E stained sections. Ad hoc supervision by a qualified molecular biologist is in any case recommended.

IEMT can provide remarkable diagnostic accuracy for the assessment of EGFR mutational status also when the only source of pathological material available for molecular analyses is represented by H&E stained sections. Ad hoc supervision by a qualified molecular biologist is in any case recommended.

Suicide presents an ongoing public health challenge internationally. Nearly 800 000 people around the world lose their life to suicide every year, and many more attempt suicide.

A decomposition analysis was performed using global suicide mortality and population data from the Global Burden of Disease Study 2019.

Despite a significant decrease in age-specific suicide rate between 1990 and 2019 (-4.01; from 13.8% to 9.8% per 100 000), the overall numbers of suicide deaths increased by 19 897 (from 738 799 to 758 696) in the same time period. The reductions in age-specific suicide rates (-6.09; 152%) contributed to the overall reductions in suicide rates; however, this was offset by overtime changes in population age structure (2.08; -52%). The increase in suicide numbers was partly attributable to population growth (300 942; 1512.5%) and population age structure (189 512; 952.4%), which was attenuated by the significant reduction in overall suicide rates (-470 556; 2364.9%). The combined effect of these fl regions.

More support and resources should be deployed for suicide prevention to the low-income and middle-income regions in order to achieve the reduction goal. Moreover, suicide prevention among older adults is increasingly critical given the world's rapidly ageing populations in all income level regions.

We aimed to define the clinical and serological characteristics of pan-neurofascin antibody-positive patients.

We tested serum from patients with suspected immune-mediated neuropathies for antibodies directed against nodal/paranodal protein antigens using a live cell-based assay and solid-phase platform. The clinical and serological characteristics of antibody-positive and seronegative patients were then compared. Sera positive for pan-neurofascin were also tested against live myelinated human stem cell-derived sensory neurons for antibody binding.

Eight patients with IgG

-subclass antibodies directed against both isoforms of the nodal/paranodal cell adhesion molecule neurofascin were identified. All developed rapidly progressive tetraplegia. Cranial nerve deficits (100% vs 26%), autonomic dysfunction (75% vs 13%) and respiratory involvement (88% vs 14%) were more common than in seronegative patients. Four patients died despite treatment with one or more modalities of standard immunotherapy (intravenous immunoglobulin, steroids and/or plasmapheresis), whereas the four patients who later went on to receive the B cell-depleting therapy rituximab then began to show progressive functional improvements within weeks, became seronegative and ultimately became functionally independent.

IgG

pan-neurofascin antibodies define a very severe autoimmune neuropathy. We urgently recommend trials of targeted immunotherapy for this serologically classified patient group.

IgG1 pan-neurofascin antibodies define a very severe autoimmune neuropathy. We urgently recommend trials of targeted immunotherapy for this serologically classified patient group.

The reported prevalence of Alport syndrome varies from one in 5000 to one in 53,000 individuals. This study estimated the frequencies of predicted pathogenic

variants in sequencing databases of populations without known kidney disease.

Predicted pathogenic variants were identified using filtering steps based on the ACMG/AMP criteria, which considered collagen IV

3-

5 position 1 Gly to be critical domains. The population frequencies of predicted pathogenic

variants were then determined per mean number of sequenced alleles. Population frequencies for compound heterozygous and digenic combinations were calculated from the results for heterozygous variants.

variants resulting in position 1 Gly substitutions were confirmed to be associated with hematuria (for each,

<0.001). Predicted pathogenic

variants were found in at least one in 2320 individuals. p.(Gly624Asp) represented nearly half (16 of 33, 48%) of the variants in Europeans. Most

variants (54 of 59, 92%) had a biochemical featuretrance may depend on other genetic and environmental factors.

Veteran suicides have increased despite mental health investments by the Veterans Health Administration (VHA).

To examine relationships between suicide and acute inpatient psychiatric bed occupancy and other community, hospital and patient factors.

Retrospective cohort study using administrative and publicly available data for contextual community factors. The study sample included all veterans enrolled in VHA primary care in 2011-2016 associated with 111 VHA hospitals with acute inpatient psychiatric units. Acute psychiatric bed occupancy, as a measure of access to care, was the main exposure of interest and was categorised by quarter as per cent occupied using thresholds of ≤85%, 85.1%-90%, 90.1%-95% and >95%. Hospital-level analyses were conducted using generalised linear mixed models with random intercepts for hospital, modelling number of suicides by quarter with a negative binomial distribution.

From 2011 to 2016, the national incidence of suicide among enrolled veterans increased from 39.7 t was associated with a 10% increased suicide risk for veterans whereas absolute number of beds was not, suggesting occupancy is an important access measure. Future work should clarify optimal bed occupancy to meet acute psychiatric needs and ensure adequate bed distribution.Protein kinase Mζ (PKMζ) maintains long-term potentiation (LTP) and long-term memory through persistent increases in kinase expression. Early-life adversity is a precursor to adult mood and anxiety disorders, in part, through persistent disruption of emotional memory throughout life. Here we subjected 10- to 16-wk-old male bonnet macaques to adversity by a maternal variable-foraging demand paradigm. We then examined PKMζ expression in their ventral hippocampi as 7- to 12-yr-old adults. Quantitative immunohistochemistry reveals decreased PKMζ in dentate gyrus, CA1, and subiculum of subjects who had experienced early-life adversity due to the unpredictability of maternal care. Adult animals with persistent decrements of PKMζ in ventral hippocampus express timid rather than confrontational responses to a human intruder. Persistent down-regulation of PKMζ in the ventral hippocampus might reduce the capacity for emotional memory maintenance and contribute to the long-lasting emotional effects of early-life adversity.Research has shown that sleep is beneficial for the long-term retention of memories. According to theories of memory consolidation, memories are gradually reorganized, becoming supported by widespread, distributed cortical networks, particularly during postencoding periods of sleep. However, the effects of sleep on the organization of memories in the hippocampus itself remains less clear. In a 3-d study, participants encoded separate lists of word-image pairs differing in their opportunity for sleep-dependent consolidation. Pairs were initially studied either before or after an overnight sleep period, and were then restudied in a functional magnetic resonance imaging (fMRI) scan session. We used multivariate pattern similarity analyses to examine fine-grained effects of consolidation on memory representations in the hippocampus. We provide evidence for a dissociation along the long axis of the hippocampus that emerges with consolidation, such that representational patterns for object-word memories initially formed prior to sleep become differentiated in anterior hippocampus and more similar, or overlapping, in posterior hippocampus. Differentiation in anterior hippocampal representations correlated with subsequent behavioral performance. Furthermore, representational overlap in posterior hippocampus correlated with the duration of intervening slow wave sleep. Together, these results demonstrate that sleep-dependent consolidation promotes the reorganization of memory traces along the long axis of the hippocampus.Temporal association learning (TAL) allows for the linkage of distinct, nonsynchronous events across a period of time. This function is driven by neural interactions in the entorhinal cortical-hippocampal network, especially the neural input from the pyramidal cells in layer III of medial entorhinal cortex (MECIII) to hippocampal CA1 is crucial for TAL. Successful TAL depends on the strength of event stimuli and the duration of the temporal gap between events. Whereas it has been demonstrated that the neural input from pyramidal cells in layer II of MEC, referred to as Island cells, to inhibitory neurons in dorsal hippocampal CA1 controls TAL when the strength of event stimuli is weak, it remains unknown whether Island cells regulate TAL with long trace periods as well. To understand the role of Island cells in regulating the duration of the learnable trace period in TAL, we used Pavlovian trace fear conditioning (TFC) with a 60-sec long trace period (long trace fear conditioning [L-TFC]) coupled with optogenetic and chemogenetic neural activity manipulations as well as cell type-specific neural ablation. We found that ablation of Island cells in MECII partially increases L-TFC performance. Chemogenetic manipulation of Island cells causes differential effectiveness in Island cell activity and leads to a circuit imbalance that disrupts L-TFC. However, optogenetic terminal inhibition of Island cell input to dorsal hippocampal CA1 during the temporal association period allows for long trace intervals to be learned in TFC. These results demonstrate that Island cells have a critical role in regulating the duration of time bridgeable between associated events in TAL.According to the active system consolidation theory, memory consolidation during sleep relies on the reactivation of newly encoded memory representations. This reactivation is orchestrated by the interplay of sleep slow oscillations, spindles, and theta, which are in turn modulated by certain neurotransmitters like GABA to enable long-lasting plastic changes in the memory store. Here we asked whether the GABAergic system and associated changes in sleep oscillations are functionally related to memory reactivation during sleep. We administered the GABAA agonist zolpidem (10 mg) in a double-blind placebo-controlled study. To specifically focus on the effects on memory reactivation during sleep, we experimentally induced such reactivations by targeted memory reactivation (TMR) with learning-associated reminder cues presented during post-learning slow-wave sleep (SWS). Zolpidem significantly enhanced memory performance with TMR during sleep compared with placebo. Zolpidem also increased the coupling of fast spindles and theta to slow oscillations, although overall the power of slow spindles and theta was reduced compared with placebo. In an uncorrected exploratory analysis, memory performance was associated with slow spindle responses to TMR in the zolpidem condition, whereas it was associated with fast spindle responses in placebo. These findings provide tentative first evidence that GABAergic activity may be functionally implicated in memory reactivation processes during sleep, possibly via its effects on slow oscillations, spindles and theta as well as their interplay.Episodic memories formed during infancy are rapidly forgotten, a phenomenon associated with infantile amnesia, the inability of adults to recall early-life memories. In both rats and mice, infantile memories, although not expressed, are actually stored long term in a latent form. These latent memories can be reinstated later in life by certain behavioral reminders or by artificial reactivations of neuronal ensembles activated at training. Whether the recovery of infantile memories is limited by developmental age, maternal presence, or contingency of stimuli presentation remains to be determined. Here, we show that the return of inhibitory avoidance memory in rats following a behavioral reactivation consisting of an exposure to the context (conditioned stimuli [CS]) and footshock (unconditioned stimuli [US]) given in a temporally unpaired fashion, is evident immediately after US and is limited by the developmental age at which the reactivations are presented; however, it is not influenced by maternal presence or the time interval between training and reactivation. We conclude that one limiting factor for infantile memory reinstatement is developmental age, suggesting that a brain maturation process is necessary to allow the recovery of a "lost" infantile memory.Prospective memory involves setting an intention to act that is maintained over time and executed when appropriate. Slow wave sleep (SWS) has been implicated in maintaining prospective memories, although which SWS oscillations most benefit this memory type remains unclear. Here, we investigated SWS spectral power correlates of prospective memory. Healthy young adult participants completed three ongoing tasks in the morning or evening. They were then given the prospective memory instruction to remember to press "Q" when viewing the words "horse" or "table" when repeating the ongoing task after a 12-h delay including overnight, polysomnographically recorded sleep or continued daytime wakefulness. Spectral power analysis was performed on recorded sleep EEG. Two additional groups were tested in the morning or evening only, serving as time-of-day controls. Participants who slept demonstrated superior prospective memory compared with those who remained awake, an effect not attributable to time-of-day of testing. Contrary to prior work, prospective memory was negatively associated with SWS. Furthermore, significant increases in spectral power in the delta-theta frequency range (1.56 Hz-6.84 Hz) during SWS was observed in participants who failed to execute the prospective memory instructions. Although sleep benefits prospective memory maintenance, this benefit may be compromised if SWS is enriched with delta-theta activity.A more thorough description of the changes in synaptic strength underlying synaptic plasticity may be achieved with quantal resolution measurements at individual synaptic sites. Here, we demonstrate that by using a membrane targeted genetic calcium sensor, we can measure quantal synaptic events at the individual synaptic sites of Aplysia sensory neuron to motor neuron synaptic connections. These results show that synaptic strength is not evenly distributed between all contacts in these cultures, but dominated by multiquantal sites of synaptic contact, likely clusters of individual synaptic sites. Surprisingly, most synaptic contacts were not found opposite presynaptic varicosities, but instead at areas of pre- and postsynaptic contact with no visible thickening of membranes. The release probability, quantal size, and quantal content can be measured over days at individual synaptic contacts using this technique. Homosynaptic depression was accompanied by a reduction in release site probability, with no evidence of individual synaptic site silencing over the course of depression. This technique shows promise in being able to address outstanding questions in this system, including determining the synaptic changes that maintain long-term alterations in synaptic strength that underlie memory.It has been reported that during chemotherapy treatment, some patients can experience nausea before pharmacological administration, suggesting that contextual stimuli are associated with the nauseating effects. There are attempts to reproduce with animal models the conditions under which this phenomenon is observed to provide a useful paradigm for studying contextual aversion learning and the brain structures involved. This manuscript assessed the hippocampus involvement in acquiring and maintaining long-term conditioned place avoidance (CPA) induced by a gastric malaise-inducing agent, LiCl. Our results demonstrate that a reliable induction of CPA is possible after one acquisition trial. However, CPA establishment requires a 20-min confinement in the compartment associated with LiCl administration. Interestingly, both hippocampal regions seem to be necessary for CPA establishment; nonetheless, inactivation of the ventral hippocampus results in a reversion of avoidance and turns it into preference. Moreover, we demonstrate that activation of dorsal/ventral hippocampal NMDA receptors after CS-US association is required for long-term CPA memory maintenance.Intestinal mucositis, resulting from 5-fluorouracil (5-FU)-based chemotherapy, subjects patients to great pain and hampers cancer treatment progress. Puerarin, the major active ingredient in Pueraria lobata, exerts anti-inflammatory and anti-oxidative effects. However, whether puerarin has an effect on 5-FU-induced intestinal mucositis remains unknown. We established a mice model of intestinal mucositis through the intraperitoneal injection of 5-FU, and then injected puerarin (50 and 100 mg/kg) intraperitoneally for 7 consecutive days. Routine parameters, such as body weight, food intake, and diarrheal incidence, were examined to evaluate the effects of puerarin on intestinal mucositis in mice. The intestinal barrier's functions were also evaluated by measuring the serum recovery of fluorescein isothiocyanate-4kD dextran in this study. The expression levels of inflammatory cytokines, inflammatory mediators, oxidative reactions, as well as apoptotic marker proteins, were determined to elucidate the underlying essing inflammation, oxidative reactions, cell apoptosis, and protected intestinal barrier functions, to ameliorate 5-FU-induced intestinal mucositis. Overall, our results suggest that puerarin can serve as a potential natural JAK inhibitor in the treatment of 5-FU-induced intestinal mucositis.Pre-filled syringes have simplified parenteral administration of protein drugs. To ensure an easy and consistent movement of the plunger, the inner glass container surface is typically siliconized. For bake-on siliconization emulsions are sprayed on and heat treated. Due to the European Union regulation REACh (Regulation concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals) the use of certain emulsion components, partially constituting the gold standard Liveo™ 365 35% Dimethicone NF Emulsion (Liveo™ 365), becomes restricted and Liveo™ 366 35% Dimethicone NF Emulsion (Liveo™ 366) has been introduced as an alternative. This change may affect the handling properties as well as the silicone layer formed. The purpose of these studies was to identify any differences that may influence the stability and safety of the final drug/device combination product to enable the use of the new emulsion. We compared silicone emulsions Liveo™ 365 and Liveo™ 366 and dilutions focusing on I) their general physical stability, II) the thermal degradation process of the emulsions and their components, and III) the resulting silicone layer concerning chemistry, morphology, and functionality. The results were linked to the assessment of the final product regarding particle formation and long-term stability. A comparison of the emulsions Liveo™ 365 and Liveo™ 366 for bake-on siliconization is presented to support the transition of the latter as it becomes mandatory with REACh. Our studies show that the two emulsions do not significantly differ with respect to handling and stability, the resultant silicone layer characteristics as well as its functionality. We conclude that the transition to the new emulsion will not significantly impact the final product or the layer performance upon storage and with respect to particle formation.Alveolar macrophages (AMs) play critical roles in maintaining lung homeostasis and orchestrating the immune responses. Although the essential factors known for AM development have been identified, currently an optimal in vitro culture system that can be used for studying the development and functions of AMs is still lacking. In this study, we report the development of an optimized culture system for generating AM-like cells from adult mouse bone marrow and fetal liver cells on in vitro culture in the presence of a combination of GM-CSF, TGF-β, and peroxisome proliferator-activated receptor γ (PPAR-γ) agonist rosiglitazone. These AM-like cells expressed typical AM surface markers sialic acid-binding Ig-like lectin-F (Siglec-F), CD11c, and F4/80, and AM-specific genes, including carbonic anhydrase 4 (Car4), placenta-expressed transcript 1 (Plet1), eosinophil-associated RNase A family member 1 (Ear1), cell death-inducing DNA fragmentation factor A-like effector c (Cidec), and cytokeratin 19 (Krt19). Similar to primary AMs, the AM-like cells expressed alternative macrophage activation signature genes and self-renewal genes. Moreover, this culture system could be used for expansion of bronchoalveolar lavage fluid-derived AMs in vitro. The AM-like cells generated from bone marrow resembled the expanded bronchoalveolar lavage fluid-derived AMs in inflammatory responses and phagocytic activity. More importantly, these AM-like cells could be obtained in sufficient numbers that allowed genetic manipulation and functional analysis in vitro. Taken together, we provide a powerful tool for studying the biology of AMs.Resistance and tolerance are vital for survivability of the host-pathogen relationship. Virulence during Toxoplasma infection in mice is mediated by parasite kinase-dependent antagonism of IFN-γ-induced host resistance. Whether avirulence requires expression of parasite factors that induce host tolerance mechanisms or is a default status reflecting the absence of resistance-interfering factors is not known. In this study, we present evidence that avirulence in Toxoplasma requires parasite engagement of the scavenger receptor CD36. CD36 promotes macrophage tropism but is dispensable for the development of resistance mechanisms. Instead CD36 is critical for re-establishing tissue homeostasis and survival following the acute phase of infection. The CD36-binding capacity of T. gondii strains is negatively controlled by the virulence factor, ROP18. Thus, the absence of resistance-interfering virulence factors and the presence of tolerance-inducing avirulence factors are both required for long-term host-pathogen survival.In the Plasmodium berghei ANKA mouse model of malaria, accumulation of CD8+ T cells and infected RBCs in the brain promotes the development of experimental cerebral malaria (ECM). In this study, we used malaria-specific transgenic CD4+ and CD8+ T cells to track evolution of T cell immunity during the acute and memory phases of P. berghei ANKA infection. Using a combination of techniques, including intravital multiphoton and confocal microscopy and flow cytometric analysis, we showed that, shortly before onset of ECM, both CD4+ and CD8+ T cell populations exit the spleen and begin infiltrating the brain blood vessels. Although dominated by CD8+ T cells, a proportion of both T cell subsets enter the brain parenchyma, where they are largely associated with blood vessels. Intravital imaging shows these cells moving freely within the brain parenchyma. Near the onset of ECM, leakage of RBCs into areas of the brain can be seen, implicating severe damage. If mice are cured before ECM onset, brain infiltration by T cells still occurs, but ECM is prevented, allowing development of long-term resident memory T cell populations within the brain. This study shows that infiltration of malaria-specific T cells into the brain parenchyma is associated with cerebral immunopathology and the formation of brain-resident memory T cells. The consequences of these resident memory populations is unclear but raises concerns about pathology upon secondary infection.Proinflammatory cytokine gene transcription must be moderated to avoid the pathological consequences of excess cytokine production. The relationships between virus infection and the mechanisms that moderate cytokine transcription are incompletely understood. We investigated the influence of Keap1 on cytokine gene induction by Sendai virus infection in mouse embryo fibroblasts. Virus infection induced Keap1 binding to the Ifnb1, Tnf, and Il6 genes. Keap1 moderated viral induction of their transcription by mechanisms that did not require Nrf2. Keap1 was required for NF-κB p50 recruitment, but not for NF-κB p65 or IRF3 recruitment, to these genes. Keap1 formed complexes with NF-κB p50 and NF-κB p65, which were visualized using bimolecular fluorescence complementation analysis. These bimolecular fluorescence complementation complexes bound chromosomes in live cells, suggesting that Keap1 could bind chromatin in association with NF-κB proteins. Keap1 was required for viral induction of G9a-GLP lysine methyltransferase binding and H3K9me2 modification at cytokine genes. G9a-GLP inhibitors counteracted transcription repression by Keap1 and enhanced Keap1 and NF-κB recruitment to cytokine genes. The interrelationships among Keap1, NF-κB, and G9a-GLP recruitment, activities, and transcriptional effects suggest that they form a feedback circuit, which moderates viral induction of cytokine transcription. Nrf2 counteracted Keap1 binding to cytokine genes and the recruitment of NF-κB p50 and G9a-GLP by Keap1. Whereas Keap1 has been reported to influence cytokine expression indirectly through its functions in the cytoplasm, these findings provide evidence that Keap1 regulates cytokine transcription directly in the nucleus. Keap1 binds to cytokines genes upon virus infection and moderates their induction by recruiting NF-κB p50 and G9a-GLP.B cells have been implicated in the pathogenesis of multiple sclerosis, but the mechanisms that guide B cell activation in the periphery and subsequent migration to the CNS remain incompletely understood. We previously showed that systemic inflammation induces an accumulation of B cells in the spleen in a CCR6/CCL20-dependent manner. In this study, we evaluated the role of CCR6/CCL20 in the context of myelin oligodendrocyte glycoprotein (MOG) protein-induced (B cell-dependent) experimental autoimmune encephalomyelitis (EAE). We found that CCR6 is upregulated on murine B cells that migrate into the CNS during neuroinflammation. In addition, human B cells that migrate across CNS endothelium in vitro were found to be CCR6+, and we detected CCL20 production by activated CNS-derived human endothelial cells as well as a systemic increase in CCL20 protein during EAE. Although mice that lack CCR6 expression specifically on B cells exhibited an altered germinal center reaction in response to MOG protein immunization, CCR6-deficient B cells did not exhibit any competitive disadvantage in their migration to the CNS during EAE, and the clinical and pathological presentation of EAE induced by MOG protein was unaffected. These data, to our knowledge, provide new information on the role of B cell-intrinsic CCR6 expression in a B cell-dependent model of neuroinflammation.The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ 3rd, order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, while excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and of inhibitory synapse maintenance.SIGNIFICANCE STATEMENTWe show that dysmorphic neurons of human epileptogenic brain lesions have decreased levels of the Ste20-like kinase (SLK). Decreasing SLK expression in mouse neurons revealed that SLK has essential functions in forming the neuronal dendritic tree and in maintaining inhibitory connections with neighboring neurons.Pain is the major debilitating symptom of osteoarthritis (OA), which is difficult to treat. In OA patients joint tissue damage only poorly associates with pain, indicating other mechanisms contribute to OA pain. Immune cells regulate the sensory system, but little is known about their involvement in OA pain. Here we report that macrophages accumulate in the dorsal root ganglia (DRG) distant from the site of injury in two rodent models of OA. DRG macrophages acquired a M1-like phenotype and depletion of DRG macrophages resolved OA pain in male and female mice. Sensory neurons innervating the damaged knee joint shape DRG macrophages into a M1-like phenotype. Persisting OA pain, accumulation of DRG macrophages, and their programming into M1-like phenotype was independent of Nav1.8 nociceptors. Inhibition of M1-like macrophages in the DRG, by intrathecal injection of a IL4-IL10 fusion protein or M2-like macrophages resolved persistent OA pain. In conclusion, these findings reveal a crucial role for macrophages inCortical processing of arithmetic and of language rely on both shared and task-specific neural mechanisms, which should also be dissociable from the particular sensory modality used to probe them. Here, spoken arithmetical and non-mathematical statements were employed to investigate neural processing of arithmetic, compared to general language processing, in an attention-modulated cocktail party paradigm. Magnetoencephalography (MEG) data were recorded from 22 human subjects listening to audio mixtures of spoken sentences and arithmetic equations while selectively attending to one of the two speech streams. Short sentences and simple equations were presented diotically at fixed and distinct word/symbol and sentence/equation rates. Critically, this allowed neural responses to acoustics, words, and symbols to be dissociated from responses to sentences and equations. Indeed, the simultaneous neural processing of the acoustics of words and symbols was observed in auditory cortex for both streams. Neural responsestening paradigm, we found that these separate networks segregate naturally when listeners selectively attend to one type over the other. Neural responses in the left temporal lobe were observed for both spoken sentences and equations, but the latter additionally showed bilateral parietal activity consistent with arithmetic processing. Critically, these responses were modulated by selective attention and correlated with task behavior, consistent with reflecting high-level processing for speech comprehension or correct calculations. The response dynamics show task-related differences that were used to reliably decode the attentional target of sentences or equations.Neurotransmitter spillover is a form of communication not readily predicted by anatomical structure. In the cerebellum, glutamate spillover from climbing fibers recruits molecular layer interneurons in the absence of conventional synaptic connections. Spillover-mediated signaling is typically limited by transporters that bind and reuptake glutamate. Here, we show that patterned expression of the excitatory amino acid transporter 4 (EAAT4) in Purkinje cells regulates glutamate spillover to molecular layer interneurons. Using male and female Aldolase C-Venus knock-in mice to visualize Zebrin microzones, we find larger climbing fiber-evoked spillover EPSCs in regions with low levels of EAAT4 compared to regions with high EAAT4. This difference is not explained by presynaptic glutamate release properties or postsynaptic receptor density but rather by differences in the glutamate concentration reaching receptors on interneurons. Inhibiting glutamate transport normalizes the differences between microzones, suggesting that heterogeneity in EAAT4 expression is a primary determinant of differential spillover. These results show that neuronal glutamate transporters limit extrasynaptic transmission in a non-cell autonomous manner and provide new insight into the functional specialization of cerebellar microzones.SIGNIFICANCE STATEMENTExcitatory amino acid transporters (EAATs) help maintain the fidelity and independence of point-to-point synaptic transmission. Whereas glial transporters are critical to maintain low ambient levels of extracellular glutamate to prevent excitotoxicity, neuronal transporters have more subtle roles in shaping excitatory synaptic transmission. Here we show that the patterned expression of neuronal EAAT4 in cerebellar microzones controls glutamate spillover from cerebellar climbing fibers to nearby interneurons. These results contribute to fundamental understanding of neuronal transporter functions and specialization of cerebellar microzones.

Mental health competence (MHC) involves psychosocial capabilities such as regulating emotions, interacting well with peers and caring for others, and predicts a range of health and social outcomes. This study examines the course of MHC from childhood to adolescence and patterning by gender and disadvantage, in Australian and UK contexts.

Longitudinal Study of Australian Children (n=4983) and the Millennium Cohort Study (n=18 296).

A measure capturing key aspects of MHC was derived summing items from the parent-reported Strengths and Difficulties Questionnaire, assessed at 4-5 years, 6-7 years, 10-11 years and 14-15 years.

Proportions of children with high MHC (scores ≥23 of range 8-24) were estimated by age and country. Random-effects models were used to define MHC trajectories according to baseline MHC and change over time. Sociodemographic patterns were described.

The prevalence of high MHC steadily increased from 4 years to 15 years (from 13.6% to 15.8% and 20.6% to 26.2% in Australia and the UK, respectively). Examination of trajectories revealed that pathways of some children diverge from this normative MHC progression. For example, 7% and 9% of children in Australia and the UK, respectively, had a low starting point and decreased further in MHC by mid-adolescence. At all ages, and over time, MHC was lower for boys compared with girls and for children from disadvantaged compared with advantaged family backgrounds.

Approaches to promoting MHC require a sustained focus from the early years through to adolescence, with more intensive approaches likely needed to support disadvantaged groups and boys.

Approaches to promoting MHC require a sustained focus from the early years through to adolescence, with more intensive approaches likely needed to support disadvantaged groups and boys.

Marked geographical disparities in survival from colon cancer have been consistently described in England. Similar patterns have been observed within London, almost mimicking a microcosm of the country's survival patterns. This evidence has suggested that the area of residence plays an important role in the survival from cancer.

We analysed the survival from colon cancer of patients diagnosed in 2006-2013, in a pre-pandemic period, living in London at their diagnosis and received care in a London hospital. We examined the patterns of patient pathways between the area of residence and the hospital of care using flow maps, and we investigated whether geographical variations in survival from colon cancer are associated with the hospital of care. To estimate survival, we applied a Bayesian excess hazard model which accounts for the hierarchical structure of the data.

Geographical disparities in colon cancer survival disappeared once controlled for hospitals, and the disparities seemed to be augmented betweed struggling areas together) and the observed exacerbation of disparities during the COVID-19 pandemic.

The role of club cells in the pathology of idiopathic pulmonary fibrosis (IPF) is not well understood. Protein disulfide isomerase A3 (PDIA3), an endoplasmic reticulum-based redox chaperone required for the functions of various fibrosis-related proteins; however, the mechanisms of action of PDIA3 in pulmonary fibrosis are not fully elucidated.

To examine the role of club cells and PDIA3 in the pathology of pulmonary fibrosis and the therapeutic potential of inhibition of PDIA3 in lung fibrosis.

Role of PDIA3 and aberrant club cells in lung fibrosis was studied by analyses of human transcriptome dataset from Lung Genomics Research Consortium, other public resources, the specific deletion or inhibition of PDIA3 in club cells and blocking SPP1 downstream of PDIA3 in mice.

and club cell secretory protein (

) signatures are upregulated in IPF compared with control patients.

or

increases also correlate with a decrease in lung function in patients with IPF. The bleomycin (BLM) model of lung fibrosis showed increases in PDIA3 in SCGB1A1 cells in the lung parenchyma. Ablation of

, specifically in SCGB1A1 cells, decreases parenchymal SCGB1A1 cells along with fibrosis in mice. The administration of a PDI inhibitor LOC14 reversed the BLM-induced parenchymal SCGB1A1 cells and fibrosis in mice. Evaluation of PDIA3 partners revealed that SPP1 is a major interactor in fibrosis. Blocking SPP1 attenuated the development of lung fibrosis in mice.

Our study reveals a new relationship with distally localised club cells, PDIA3 and SPP1 in lung fibrosis and inhibition of PDIA3 or SPP1 attenuates lung fibrosis.

Our study reveals a new relationship with distally localised club cells, PDIA3 and SPP1 in lung fibrosis and inhibition of PDIA3 or SPP1 attenuates lung fibrosis.

Clinicians evaluating for herpes simplex virus (HSV) in febrile infants must balance detection with overtesting, and there is no universally accepted approach to risk stratification. We aimed to describe variation in diagnostic evaluation and empirical acyclovir treatment of infants aged 0 to 60 days presenting with fever and determine the association between testing and length of stay (LOS).

In this retrospective 44-hospital observational study, we used the Pediatric Health Information System database to identify infants aged ≤60 days evaluated for fever in emergency departments from January 2016 through December 2017. We described hospital-level variation in laboratory testing, including HSV, imaging and other diagnostic evaluations, acyclovir use, and LOS. We assessed the relationship between HSV testing and LOS using generalized linear mixed effects models adjusted for age and illness severity.

In 24 535 encounters for fever, the median HSV testing frequency across hospitals was 35.6% (interquartiler further studies to help clinicians better risk-stratify febrile infants and to guide HSV testing and treatment decisions.Species-specific sperm-egg interactions are essential for sexual reproduction. Broadcast spawning of marine organisms is under particularly stringent conditions, since eggs released into the water column can be exposed to multiple different sperm. Bindin isolated from the sperm acrosome results in insoluble particles that cause homospecific eggs to aggregate, whereas no aggregation occurs with heterospecific eggs. Therefore, Bindin is concluded to play a critical role in fertilization, yet its function has never been tested. Here we report that Cas9-mediated inactivation of the bindin gene in a sea urchin results in perfectly normal-looking embryos, larvae, adults, and gametes in both males and females. What differed between the genotypes was that the bindin -/- sperm never fertilized an egg, functionally validating Bindin as an essential gamete interaction protein at the level of sperm-egg cell surface binding.The Early Cretaceous Jehol Biota is a terrestrial lagerstätte that contains exceptionally well-preserved fossils indicating the origin and early evolution of Mesozoic life, such as birds, dinosaurs, pterosaurs, mammals, insects, and flowering plants. New geochronologic studies have further constrained the ages of the fossil-bearing beds, and recent investigations on Early Cretaceous tectonic settings have provided much new information for understanding the spatiotemporal distribution of the biota and dispersal pattern of its members. Notably, the occurrence of the Jehol Biota coincides with the initial and peak stages of the North China craton destruction in the Early Cretaceous, and thus the biotic evolution is related to the North China craton destruction. However, it remains largely unknown how the tectonic activities impacted the development of the Jehol Biota in northeast China and other contemporaneous biotas in neighboring areas in East and Central Asia. It is proposed that the Early Cretaceous rift basins migrated eastward in the northern margin of the North China craton and the Great Xing'an Range, and the migration is regarded to have resulted from eastward retreat of the subducting paleo-Pacific plate. The diachronous development of the rift basins led to the lateral variations of stratigraphic sequences and depositional environments, which in turn influenced the spatiotemporal evolution of the Jehol Biota. This study represents an effort to explore the linkage between terrestrial biota evolution and regional tectonics and how plate tectonics constrained the evolution of a terrestrial biota through various surface geological processes.Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.Essential worker absenteeism has been a pressing problem in the COVID-19 pandemic. Nearly 20% of US hospitals experienced staff shortages, exhausting replacement pools and at times requiring COVID-positive healthcare workers to remain at work. To our knowledge there are no data-informed models examining how different staffing strategies affect epidemic dynamics on a network in the context of rising worker absenteeism. Here we develop a susceptible-infected-quarantined-recovered adaptive network model using pair approximations to gauge the effects of worker replacement versus redistribution of work among remaining healthy workers in the early epidemic phase. Parameterized with hospital data, the model exhibits a time-varying trade-off Worker replacement minimizes peak prevalence in the early phase, while redistribution minimizes final outbreak size. Any "ideal" strategy requires balancing the need to maintain a baseline number of workers against the desire to decrease total number infected. We show that one adaptive strategy-switching from replacement to redistribution at epidemic peak-decreases disease burden by 9.7% and nearly doubles the final fraction of healthy workers compared to pure replacement.Genebanks collect and preserve vast collections of plants and detailed passport information, with the aim of preserving genetic diversity for conservation and breeding. Genetic characterization of such collections has the potential to elucidate the genetic histories of important crops, use marker-trait associations to identify loci controlling traits of interest, search for loci undergoing selection, and contribute to genebank management by identifying taxonomic misassignments and duplicates. We conducted a genomic scan with genotyping by sequencing (GBS) derived single nucleotide polymorphisms (SNPs) of 10,038 pepper (Capsicum spp.) accessions from worldwide genebanks and investigated the recent history of this iconic staple. Genomic data detected up to 1,618 duplicate accessions within and between genebanks and showed that taxonomic ambiguity and misclassification often involve interspecific hybrids that are difficult to classify morphologically. We deeply interrogated the genetic diversity of the commonly consumed Capsicum annuum to investigate its history, finding that the kinds of peppers collected in broad regions across the globe overlap considerably.

Autoři článku: Aaenmouritzen8584 (Brodersen Patton)