Wilkersondoherty2904

Z Iurium Wiki

I include a few narratives to personalize the science, share details of the story that are not included in typical publications, and provide perspective for investigators who are interested in developing their own study organism.Despite the great abundance and diversity of molluscs, only a few have attained "model research organism" status. One of those species is the slipper snail Crepidula fornicata. Its embryos were first used for classical lineage tracing studies in the late 19th century, and over a 100 years later they were "re-discovered" by our labs and used for modern fate mapping, gene perturbation, in vivo imaging, transcriptomics, and the first application of CRISPR/Cas9-mediated genome editing among the Spiralia/Lophotrochozoa. Simultaneously, other labs made extensive examinations of taxonomy, phylogeny, ecology, life-history, mode of development, larval feeding behavior, and responses to the environment in members of the family Calyptraeidae, which includes the genus Crepidula. Recently, we developed tools, resources, and husbandry protocols for another, direct-developing species, Crepidula atrasolea. This species is an ideal "lab rat" among molluscs. Together these species will be valuable for probing the cellular and molecular mechanisms underlying molluscan biology and evolution.Platyhelminthes can perhaps rightly be described as a phylum of the good, the bad, and the ugly remarkable free-living worms that colonize land, river, and sea, which are often rife with color and can display extraordinary regenerative ability; parasitic worms like schistosomes that cause devastating disease and suffering; and monstrous tapeworms that are the stuff of nightmares. In this chapter, we will explore how our research expanded beyond free-living planarians to their gruesome parasitic cousins. We start with Schistosoma mansoni, which is not a new model; however, approaching these parasites from a developmental perspective required a reinvention that may hold generalizable lessons to basic biologists interested in pivoting to disease models. We then turn to our (re)establishment of the rat tapeworm Hymenolepis diminuta, a once-favorite model that had been largely forgotten by the molecular biology revolution. Here we tell our stories in three, first-person narratives in order to convey personal views of our experiences. Welcome to the dark side.The arrival of cheap and high-throughput sequencing paired with efficient gene editing technologies allows us to use non-traditional model systems and mechanistically approach biological phenomena beyond what was conceivable just a decade ago. Venturing into different model systems enables us to explore for example clade-specific environmental responses to changing climates or the genetics and development of clade-specific organs, tissues and cell types. We-both early career researchers working with the wild grass model Brachypodium distachyon-want to use this review to (1) highlight why we think B. distachyon is a fantastic grass developmental model system, (2) summarize the tools and resources that have enabled discoveries made in B. distachyon, and (3) discuss a handful of developmental biology vignettes made possible by using B. distachyon as a model system. Finally, we want to conclude by (4) relating our personal stories with this emerging model system and (5) share what we think is important to consider before starting work with an emerging model system.Understanding the remarkable regenerative abilities of freshwater planarians was a classic problem of developmental biology. These animals were widely studied until the late 1960s, when their use as experimental subjects declined precipitously after some infamous experiments on memory transfer. By the mid-1990s, only a handful of laboratories worldwide were investigating the mechanisms of planarian regeneration. Here, we provide the personal stories behind our work to reinvigorate studies of these fascinating animals. We recount many of the challenges that had to be overcome and reflect on some of the fortuitous events that helped launch the planarian Schmidtea mediterranea as a model organism for studying the molecular basis of regeneration.Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.This chapter is the story of how I pioneered ants as a system for studying eco-evo-devo, a field that integrates developmental biology with ecology and evolutionary biology. One aim of eco-evo-devo is to understand how the interactions between genes and their environments during development facilitates the origin and evolution of novel phenotypes. read more In a series of six parts, I review some of the key discoveries from my lab on how novel worker caste systems in ants--soldiers and supersoldiers--originated and evolved. I also discuss some of the ideas that emerged from these discoveries, including the role that polyphenisms, hidden developmental potentials, and rudimentary organs play in facilitating developmental and evolutionary change. As superorganisms, I argue that ants are uniquely positioned to reveal types of variation that are often difficult to observe in nature. In doing so, they have the potential to transform our view of biology and provide new perspectives in medicine, agriculture, and biodiversity conservation. With my story I hope to inspire the next generation of biologists to continue exploring the unknown regions of phenotypic space to solve some of our most pressing societal challenges.Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonize most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behavior. Given these attributes, crustaceans provide a fertile ground for exploring biological diversity through comparative studies. However, beyond insects, few crustaceans are developed sufficiently as experimental models to enable such studies. The marine amphipod Parhyale hawaiensis is currently the best established crustacean system, offering year-round accessibility to developmental stages, transgenic tools, genomic resources, and established genetics and imaging approaches. The Parhyale research community is small but diverse, investigating the evolution of development, regeneration, aspects of sensory biology, chronobiology, bioprocessing and ecotoxicology.Experimentally tractable organisms like C. elegans, Drosophila, zebrafish, and mouse are popular models for addressing diverse questions in biology. In 1997, two of the most valuable invertebrate model organisms to date-C. elegans and Drosophila-were found to be much more closely related to each other than expected. C. elegans and Drosophila belong to the nematodes and arthropods, respectively, and these two phyla and six other phyla make up a clade of molting animals referred to as the Ecdysozoa. The other ecdysozoan phyla could be valuable models for comparative biology, taking advantage of the rich and continual sources of research findings as well as tools from both C. elegans and Drosophila. But when the Ecdysozoa was first recognized, few tools were available for laboratory studies in any of these six other ecdysozoan phyla. In 1999 I began an effort to develop tools for studying one such phylum, the tardigrades. Here, I describe how the tardigrade species Hypsibius exemplaris and tardigrades more generally have emerged over the past two decades as valuable new models for answering diverse questions. To date, these questions have included how animal body plans evolve and how biological materials can survive some remarkably extreme conditions.Acoel worms represent an enigmatic lineage of animals (Acoelomorpha) that has danced around the tree of animal life. Morphology-based classification placed them as flatworms (Phylum Platyhelminthes), with much of their biology being interpreted as a variation on what is observed in better-studied members of that phylum. However, molecular phylogenies suggest that acoels belong to a clade (Xenacoelomorpha) that could be a sister group to other animals with bilateral symmetry (Bilateria) or could belong within deuterostomes, closely related to a group that includes sea stars (Ambulacraria). This change in phylogenetic position has led to renewed interest in the biology of acoels, which can now offer insights into the evolution of many bilaterian traits. The acoel Hofstenia miamia has emerged as a powerful new research organism that enables mechanistic studies of xenacoelomorph biology, especially of developmental and regenerative processes. This article explains the motivation for developing Hofstenia as a new model system, describes Hofstenia biology, highlights the tools and resources that make Hofstenia a good research organism, and considers the questions that Hofstenia is well-positioned to answer. Finally, looking to the future, this article serves as an invitation to new and established scientists to join the growing community of researchers studying this exciting model system.The hydrozoan species Clytia hemisphaerica was selected in the mid-2000s to address the cellular and molecular basis of body axis specification in a cnidarian, providing a reliable daily source of gametes and building on a rich foundation of experimental embryology. The many practical advantages of this species include genetic uniformity of laboratory jellyfish, derived clonally from easily-propagated polyp colonies. Phylogenetic distance from other laboratory models adds value in providing an evolutionary perspective on many biological questions. Here we outline the current state of the art regarding available experimental approaches and in silico resources, and illustrate the contributions of Clytia to understanding embryo patterning mechanisms, oogenesis and regeneration. Looking forward, the recent establishment of transgenesis methods is now allowing gene function and imaging studies at adult stages, making Clytia particularly attractive for whole organism biology studies across fields and extending its scientific impact far beyond the original question of interest.

Autoři článku: Wilkersondoherty2904 (Aarup Allison)