Walkerlundqvist5982

Z Iurium Wiki

auricolifolia, S. hicesiae, S. ichnusae, S. mollissima, S. oenotriae and S. velutina. The description of the seed shape based on geometric models contributes to investigating the relationships between related species and constitutes a promising technique for taxonomy.Understanding the role of root cell walls in the mechanism of plant tolerance to salinity requires elucidation of the changes caused by salinity in the interactions between the mechanical properties of the cell walls and root growth, and between the chemical composition of the cell walls and root growth. Here, we investigated cell wall composition and extensibility of roots by growing a halophyte (Suaeda salsa) and a glycophyte (Spinacia oleracea) species under an NaCl concentration gradient. Root growth was inhibited by increased salinity in both species. However, root growth was more strongly reduced in S. oleracea than in S. salsa. Salinity reduced cell wall extensibility in S. oleracea significantly, whereas treatment with up to 200 mM NaCl increased it in S. selleck salsa. Meanwhile, S. salsa root cell walls exhibited relatively high cell wall stiffness under 300 mM NaCl treatment, which resist wall deformation under such stress conditions. There was no decrease in pectin content with salinity treatment in the cell walls of the elongation zone of S. salsa roots. Conversely, a decrease in pectin content was noted with increasing salinity in S. oleracea, which might be due to Na+ accumulation. Cellulose content and uronic acid proportions in pectin increased with salinity in both species. Our results suggest that (1) cell wall pectin plays important roles in cell wall extension in both species under salinity, and that the salt tolerance of glycophyte S. oleracea is affected by the pectin; (2) cellulose limits root elongation under saline conditions in both species, but in halophytes, a high cell wall content and the proportion of cellulose in cell walls may be a salt tolerance mechanism that protects the stability of cell structure under salt stress; and (3) the role of the cell wall in root growth under salinity is more prominent in the glycophyte than in the halophyte.The chemical composition of Vitex agnus-castus L. (Verbenaceae family) fruits, collected from two regions in Bulgaria (south-central and north-east Bulgaria), was investigated. The content of proteins (5.3-7.4%), carbohydrates (73.9-78.8%), fiber (47.2-49.9%), ash (2.5-3.0%), essential oils (0.5%), and vegetable oil (3.8-5.0%) were identified in the fruits. The composition of the essential oils (EOs) of Vitex fruits from both regions was determined; the main compounds were 1,8-cineole (16.9-18.8%), α-pinene (7.2-16.6%), sabinene (6.7-14.5%), and bicyclogermacrene (7.3-9.0%), but significant differences in the quantitative and qualitative composition of EOs between the regions were found. The EOs of plants from north-east Bulgaria demonstrated antimicrobial activity against the pathogenic species Salmonella abony, Staphylococcus aureus, and Bacillus subtilis, but the Gram-negative bacteria Esсherichia coli and Pseudomonas aeruginosa exhibited resistance to the oil. Linoleic acid predominated in vegetable oil from both regions, followed by oleic acid. β-sitosterol and γ-tocopherol were the main components in the sterol and tocopherol fraction of the lipids. Phosphatidic acids were the main components in the vegetable oil from north-east Bulgaria, while in the vegetable oil from south-central Bulgaria, all phospholipids were found in almost the same quantity. Overall, significant differences were observed in the chemical composition (proteins, carbohydrates, ash and moisture) of the fruits from the two regions of Bulgaria, as well as in the content of the main components of their essential and vegetable oils.Invasive alien species (IAS) are a problem, especially in drought-prone environments such as the Mediterranean Basin where the exacerbation of the already severe conditions could constrain the native species acclimatation degree, creating new opportunities for IAS. Climate change may drive IAS expansions, even if different IAS can vary in their acclimatation response. Thus, it is important to obtain a broader insight of how the different IAS face abiotic stress. This research aimed to compare the effect of the imposed water stress on physiological and morphological leaf traits of Ailanthus altissima (AA), Robinia pseudoacacia (RP), and Phytolacca americana (PA), which are widely spread IAS in the Mediterranean Basin. Our results showed a species-dependent effect of the water stress at a physiological and morphological level, as well as an interaction between species and stress duration. Despite a common strategy characterized by low stomatal control of the photosynthesis, AA, PA, and RP differ in their sensitivity to water stress. In particular, even if AA was characterized by a more water-spending strategy, it was more resistant to water stress than PA and RP. In this view, the key factor was its plasticity to increase leaf mass per area (LMA) in response to water stress.Flower-rich field margins provide habitats and food resources for natural enemies of pests (NEs), but their potential, particularly in the tropics and on smallholder farms, is poorly understood. We surveyed field margins for plant-NE interactions in bean fields. NEs most often interacted with Bidens pilosa (15.4% of all interactions) and Euphorbia heterophylla (11.3% of all interactions). In cage trials with an aphid-infested bean plant and a single flowering margin plant, the survival of Aphidius colemani, the most abundant parasitoid NE in bean fields, was greater in the presence of Euphorbia heterophylla than Bidens pilosa, Tagetes minuta, and Hyptis suaveolens. UV-fluorescent dye was applied to flowers of specific field margin plant species and NE sampled from within the bean crop and field margins using sweep-netting and pan-traps respectively. Captured insects were examined for the presence of the dye, indicative of a prior visit to the margin. Lady beetles and assassin bugs were most abundant in plots with B. pilosa margins; hoverflies with T. minuta and Parthenium hysterophorus margins; and lacewings with T. minuta and B. pilosa margins. Overall, NE benefitted from field margin plants, and those possessing extra floral nectaries had an added advantage. Field margin plants need careful selection to ensure benefits to different NE groups.Tigernut or 'chufa' (Cyperus esculentus L. var. sativus) is gaining popularity in the United States as a high energy tuber crop known for sweet and chewy taste, 40-45% gluten-free digestible carbohydrate, high dietary fiber content, healthful fatty acid profile (73% monounsaturated, 18% saturated, 9% polyunsaturated-similar to olive oil), high oleic acid, and high P, K, and vitamins C. E. Tigernut tubers were obtained from specialty crop markets in central NJ and purchased online from commercial distributors as propagules for transplants for hoop house and field production studies. Nine tigernut selections were also evaluated under NJ hoop house culture conditions for growth habit and in the field for adaptation and productivity We concluded that tigernut production is feasible in NJ based on the results of these experiments. The growth patterns of three selections (GH, MV and SK) were studied and characterized. Foliage growth was similar in the three selections. Plant height ranged from an average of 90 cm in GH to 110 cm in MV and SK; side shoot production capacity ranged from 13 shoots per propagule in GH to 20 or more in MV and SK over 14 weeks. Over 99% of tubers in MV and SK were located within the upper 5 cm of the growth media (Pro-Mix BX brand) but tubers of GH were observed at greater soil depths (~20 cm). Tubers varied from spherical (round) in shape in GH and SK to oblong (elongated) in MV. In the field the best growth and tuber yields from NG3 and T-USA selections were obtained under black or white-over-black plastic mulch in conventionally managed plots. Tubers showed high levels of Fe (168-218 ppm) and Zn (39-50 ppm) implying that they should be a good source of these essential elements in human diet. Studies also showed that the tigernut tuber cannot survive the cold winter months in the field in NJ, therefore minimizing the fear of "tigernut invasion" of agronomic fields in NJ and similar agroecosystems.To understand the characteristics of net NH4+ and NO3- fluxes and their relation with net H+ fluxes in Taxodium, net fluxes of NH4+, NO3- and H+ were detected by a scanning ion-selective electrode technique under different forms of fixed nitrogen (N) and experimental conditions. The results showed that higher net NH4+ and NO3- fluxes occurred at 2.1-3.0 mm from the root apex in T. ascendens and T. distichum. Compared to NH4+ or NO3- alone, more stable net NH4+ and NO3- fluxes were found under NH4NO3 supply conditions, of which net NH4+ flux was promoted at least 1.71 times by NO3-, whereas net NO3- flux was reduced more than 81.66% by NH4+ in all plants, which indicated that NH4+ is preferred by Taxodium plants. T. ascendens and T. mucronatum had the largest net NH4+ and total N influxes when NH4+NO3- was 31. 15N Atom% and activities of N assimilation enzymes were improved by single N fertilization in the roots of T. distichum. In most cases, net H+ fluxes were tightly correlated with net NH4+ and NO3- fluxes. Thus, both N forms and proportions could affect N uptake of Taxodium. These findings could provide useful guidance for N management for better productivity of Taxodium plants.Despite their evolutionary relevance, multispecies networks or syngameons are rarely reported in the literature. Discovering how syngameons form and how they are maintained can give insight into processes such as adaptive radiations, island colonizations, and the creation of new hybrid lineages. Understanding these complex hybridization networks is even more pressing with anthropogenic climate change, as syngameons may have unique synergistic properties that will allow participating species to persist. The formation of a syngameon is not insurmountable, as several ways for a syngameon to form have been proposed, depending mostly on the magnitude and frequency of gene flow events, as well as the relatedness of its participants. Episodic hybridization with small amounts of introgression may keep syngameons stable and protect their participants from any detrimental effects of gene flow. As genomic sequencing becomes cheaper and more species are included in studies, the number of known syngameons is expected to increase. Syngameons must be considered in conservation efforts as the extinction of one participating species may have detrimental effects on the survival of all other species in the network.Cinnamomum verum, Origanum majorana, and Origanum vulgare have been used in traditional medicine for a long time to treat diabetes because of their promising therapeutic effects. The combination of these plants (COO) was tested to improve their efficacy using selenium nanoparticles (Se-COO-NPs) and gum Arabic (GA) as stabilizers for sustained release. Phenolic compounds of plants were identified using liquid chromatography-mass spectrometry (LC-MS/MS). GA-Se-COO-NPs were characterized by spectroscopic and microscopic methods and evaluated in diabetic zebrafish. The ultraviolet spectrum was assessed to confirm the formation of plasmon resonance at 267 nm. The obtained particle size of selenium nanospheres was 65.76 nm. They were maintained in a stable form for 5 months at 4 °C. Transmission electron microscopy (TEM) images demonstrated the presence of individual spherical nanoparticles. Fourier transform infrared spectroscopy (FT-IR) showed the interaction between COO extract and selenium, exhibiting good entrapment efficiency (87%).

Autoři článku: Walkerlundqvist5982 (Lyons Thestrup)