Leonrandall8136

Z Iurium Wiki

Aging is driven by four interlinked processes (1) low-grade sterile inflammation; (2) macromolecular and organelle dysfunction, including DNA damage, telomere erosion, and mitochondrial dysfunction; (3) stem cell dysfunction; and (4) an accumulation of senescent cells in tissues. Adipose tissue is not immune to the effects of time, and all four of these processes contribute to a decline of adipose tissue function with advanced age. This decline is associated with an increase in metabolic disorders. Conversely, optimally functioning adipose tissue generates signals that promote longevity. As tissue-resident progenitor cells that actively participate in adipose tissue homeostasis and dysregulation, adipose stem cells (ASCs) have emerged as a key feature in the relationship between age and adipose tissue function. This review will give a mechanistic overview of the myriad ways in which age affects ASC function and, conversely, how ASC function contribute to healthspan and lifespan. A central mediator in this relationship is the degree of resilience of ASCs to maintain stemness into advanced age and the consequent preservation of adipose tissue function, in particular subcutaneous fat. The last sections of this review will discuss therapeutic options that target senescent ASCs to extend healthspan and lifespan, as well as ASC-based therapies that can be used to treat age-related pathologies, and collectively, these therapeutic applications may transform the way we age.Age-related neurodegenerative diseases have detrimental consequences on health of many patients and result in mortality. The current treatment options are limited and usually fail to correct the underlying pathology. AAV-based gene therapies have proved to be safe based on the data available on clinical trials for several monogenic diseases. Therefore, such therapies can pave the way to treat neurodegenerative diseases likes Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Here, the advantages of AAV-based gene therapies are discussed with emphasis on efforts of developing novel capsids with superior therapeutic efficacy. Furthermore, the results of clinical trials on AD, PD, and ALS are summarized.Recent events regarding the COVID-19 pandemic have demonstrated the importance of healthcare workers around the world and the stressful working conditions that are often associated with their profession. The severity of stress can be influenced by a number of factors such as age, seniority gender, family status, and position in the wards. Thus, it is important to monitor signs of stress and other psychiatric symptoms in order to understand the mediating factors and guide appropriate interventions. Here, we describe a cross-sectional study of 17,414 nurses from 31 Iranian cities carried out from 2011 to 2015, using a 22-item tool of work stressors. The tool examined interactive, managerial, and situational domains and the main objective was to identify the main background variables associated with the stress of nurses in critical care settings.Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline. Existing drugs only suppress symptoms or delay further deterioration but do not address the cause of the disease. In spite of screening numerous drug candidates against various molecular targets of AD, only a few candidates, such as acetylcholinesterase inhibitors, are currently utilized as an effective clinical therapy. Currently, nano-based therapies can make a difference, providing new therapeutic options by helping drugs to cross the blood-brain barrier and enter the brain more effectively. The main aim of this review was to highlight advances in research on the development of nano-based therapeutics for improved treatment of AD.Mesenchymal stem cell (MSC) dysfunction is a serious complication in ageing and age-related inflammatory diseases such as type 2 diabetes mellitus. Inflammation and oxidative stress-induced cellular senescence alter the immunomodulatory ability of MSCs and hamper their pro-regenerative function, which in turn leads to an increase in disease severity, maladaptive tissue damage and the development of comorbidities. Targeting stem/progenitor cells to restore their function and/or protect them against impairment could thus improve healing outcomes and significantly enhance the quality of life for diabetic patients. This review discusses the dysregulation of MSCs' immunomodulatory capacity in the context of diabetes mellitus and focuses on intervention strategies aimed at MSC rejuvenation. Research pertaining to the potential therapeutic use of either pharmacological agents (NFкB antagonists), natural products (phytomedicine) or biological agents (exosomes, probiotics) to improve MSC function is discussed and an overview of the most pertinent methodological considerations given. Based on in vitro studies, numerous anti-inflammatory agents, antioxidants and biological agents show tremendous potential to revitalise MSCs. An integrated systems approach and a thorough understanding of complete disease pathology are however required to identify feasible candidates for in vivo targeting of MSCs.Aging is a biological process with effects at the molecular, cellular, tissue, organ, system, and organismal levels and is characterized by decline in physical function and higher risks of age-related diseases. The use of anti-aging drugs for disease prevention has become a high priority for science and is a new biomedicine trend. Geroprotectors are compounds which slow aging and increase lifespan of the organism in question. The common painkiller aspirin, a member of the non-steroidal anti-inflammatory drug (NSAID) family, is one of the potential geroprotective agents. Aspirin is often used in treatment of mild to moderate pain. It has anti-inflammatory and anti-pyretic properties and acts as an inhibitor of cyclooxygenase which results in inhibition of prostaglandin. Acetylsalicylic acid as an active compound of aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. Aspirin has shown life-extending effects in numerous model organisms. Colforsin This chapter reviews the evidence for clinical efficacy of aspirin including cardiovascular disease prevention, anti-cancer effects, and improvement of cognitive function.

Autoři článku: Leonrandall8136 (Keith Horowitz)