Lamontbird7608
As compared to those women with the greatest sun exposure, women with low and moderate sun exposure were at 41% and 15% higher odds of hypertension (OR 1.41, 95% CI 1.3‒1.6, p less then 0.001 and OR 1.15, 95% CI 1.1‒1.2, p less then 0.001), respectively. There was a strong age-related increased risk of hypertension. Other risk factors for hypertension were lack of exercise (OR 1.36), a non-fair phenotype (OR 1.08), chronic high stress level (OR 1.8), and lack of university education (OR 1.3). We conclude that in our observational design sun exposure was associated with a dose-dependent reduced risk of hypertension, which might partly explain the fewer deaths of cardiovascular disease with increasing sun exposure.
Afamelanotide (AFA) is a synthetic analogue of α-melanocyte-stimulating hormone that is approved for the treatment of patients affected by erythropoietic protoporphyria (EPP). AFA induces a "sun free" tanning and changes of acquired melanocytic nevi (AMN) that are generically described as "darkening".
To assess clinical and dermoscopic AMN changes during AFA treatment.
Adult EPP patients treated with two AFA implants 50days apart were enrolled. They underwent a clinical and dermoscopic examination of all AMN at baseline (T0), and after 5 (T1) and 12 (T2) months from the first AFA implant. The general pattern, symmetry, number, and size of pigmented globules, morphology of the pigment network, and dermoscopic melanoma features were assessed.
Fifteen patients were enrolled with 103 AMN. At T1 all reticular and 2-component AMN showed a focal network thickening that returned to baseline by T2. Selleckchem Tanzisertib The increase of globules' number was observed at T1 but not at T2. The difference in number was not influenced by patients' age or phototype. Dermoscopic changes suggestive of malignancy were never seen. The development of new AMN was never registered.
AFA treatment induces reversible changes of AMN dermoscopic morphology without findings suggestive of malignant transformation and it does not stimulate the development of new AMN.
AFA treatment induces reversible changes of AMN dermoscopic morphology without findings suggestive of malignant transformation and it does not stimulate the development of new AMN.The photochemistry of Fe(III) coordinated to natural uronate-containing polysaccharides has been investigated quantitatively in aqueous solution. It is demonstrated that the photoreduction of the coordinated Fe(III) to Fe(II) and oxidative decarboxylation occurs in a variety of uronate-containing polysaccharides. The photochemistry of the Fe(III)-polyuronic acid system generated a radical species during the reaction which was studied using the spin trapping technique. The identity of the radical species from this reaction was confirmed as CO2•- indicating that both bond cleavage of the carboxylate and oxidative decarboxylation after ligand to metal charge transfer radical reactions may be taking place upon irradiation. Degradation of the polyuronic acid chain was investigated with dynamic light scattering, showing a decrease in the hydrodynamic radius of the polymer assemblies in solution after light irradiation that correlates with the Fe(II) generation. A decrease in viscosity of Fe(IIII)-alginate after light irradiation was also observed. Additionally, the photochemical reaction was investigated in plant root tissue (parsnip) demonstrating that Fe(III) coordination in these natural materials leads to photoreactivity that degrades the pectin component. These results highlight that this Fe(III)-polyuronic acid can occur in many natural systems and may play a role in biogeochemical cycling of iron and ferrous iron generation in plants with significant polyuronic acid content.Charge recombination kinetics of bacterial photosynthetic protein Reaction Center displays an exquisite sensitivity to the actual occupancy of ubiquinone-10 in its QB-binding site. Here, we have exploited such phenomenon for assessing the growth and the aggregation/fusion of phosphocholine vesicles embedding RC in their membrane, when treated with sodium oleate.
Photo-thermal therapy (PTT) has been at the center of attention as a new method for cancer treatment in recent years. It is important to predict the response to treatment in the PTT procedure. Using magnetic resonance spectroscopy (MRS) can be considered a novel technique in evaluating changes in metabolites resulted from PTT.
In the present project, we conducted an in vivo study to assess the efficacy of
H-MRS as a noninvasive technique to evaluate the response to treatment in the early hours following PTT. The BALB/c mice subcutaneously bearing tumor cells (CT26 cell line) were scanned by
H-MRS before and after PTT. Iron oxide-gold core-shell (Fe
O
@Au) as PTT agent was injected into intra-peritoneal at first and then irradiated by NIR laser. Single-voxel Point RESolved Spectroscopy (PRESS) sequence (TE = 144) was used, and metabolites alternations were evaluated by the non-parametric Wilcoxon test. Besides, Nanoparticle (NP) relaxometry was conducted for negative contrast agents' potentials.
MRS choline (Cho) peak dramatically reduced 24h post-PTT (p = 0.01) and lipid peak as a marker for necrosis of tumor elevated (p = 0.01) just in group 3 (NPs injection + laser irradiation) 24h after the procedure.
H-MRS showed its potential as a method in detecting the changes in metabolites and revealing the outcome accurately. Response to photo-thermal therapy evaluation was achievable only one day after PTT and proved by a 10-day follow-up of the tumor size. Iron oxide-gold core-shell can also be used as a negative contrast agent in MRI images during therapy.
1H-MRS showed its potential as a method in detecting the changes in metabolites and revealing the outcome accurately. Response to photo-thermal therapy evaluation was achievable only one day after PTT and proved by a 10-day follow-up of the tumor size. Iron oxide-gold core-shell can also be used as a negative contrast agent in MRI images during therapy.This study evaluated the differences in vitamin D3 synthesis in two different latitudes throughout 1 year using an in vitro model, which simulates cutaneous vitamin D photoproduction. Borosilicate ampoules containing 7-dehydrocholesterol (7-DHC) were exposed to sunlight hourly throughout the daylight hours, 1 day per month for a year, in Fortaleza (latitude 03° 43' 01" S-LAT3° S) and Sao Paulo (latitude 23° 32' 53" S-LAT23° S). Later, vitamin D3 and photoisomers of 7-DHC (tachysterol and lumisterol) were measured by a high-performance liquid chromatography system (HPLC). Vitamin D synthesis weighted UV radiation (UVBVitD) and solar zenith angle (SZA) were calculated during the same periods for both latitudes. Vitamin D3 synthesis occurred throughout the year in both locations, as expected in latitudes lower than 35°. Median of photoconversion to vitamin D3 through the year was higher in LAT3°S [median (IQR) LAT 3°S 4.1% (6.0); LAT 23°S 2.9% (4.5); p value = 0.020]. Vitamin D3 production strongly correlated with UV-B (LAT3° S, r = 0.