Berthelsenbroberg7838

Z Iurium Wiki

Non-invasive strategies that can identify oral malignant and dysplastic oral potentially-malignant lesions (OPML) are necessary in cancer screening and long-term surveillance. Optical coherence tomography (OCT) can be a rapid, real time and non-invasive imaging method for frequent patient surveillance. Here, we report the validation of a portable, robust OCT device in 232 patients (lesions 347) in different clinical settings. The device deployed with algorithm-based automated diagnosis, showed efficacy in delineation of oral benign and normal (n = 151), OPML (n = 121), and malignant lesions (n = 75) in community and tertiary care settings. This study showed that OCT images analyzed by automated image processing algorithm could distinguish the dysplastic-OPML and malignant lesions with a sensitivity of 95% and 93%, respectively. Furthermore, we explored the ability of multiple (n = 14) artificial neural network (ANN) based feature extraction techniques for delineation high grade-OPML (moderate/severe dysplasia). The support vector machine (SVM) model built over ANN, delineated high-grade dysplasia with sensitivity of 83%, which in turn, can be employed to triage patients for tertiary care. The study provides evidence towards the utility of the robust and low-cost OCT instrument as a point-of-care device in resource-constrained settings and the potential clinical application of device in screening and surveillance of oral cancer.

Emerging evidence has revealed that genetic variations in microRNA (miRNA) binding sites called miRSNPs can alter miRNA binding in an allele-specific manner and impart prostate cancer (PCa) risk. Two miRSNPs, rs1530865 (G > C) and rs2357637 (C > A), in the 3' untranslated region of pyruvate dehydrogenase kinase 1 (PDK1) have been previously reported to be associated with PCa risk. However, these results have not been functionally validated.

In silico analysis was used to predict miRNA-PDK1 interactions and was tested using PDK1 knockdown, miRNA overexpression and reporter gene assay.

PDK1 expression was found to be upregulated in PCa metastasis. Further, our results show that PDK1 suppression reduced the migration, invasion, and glycolysis of PCa cells. Computational predictions showed that miR-3916, miR-3125 and miR-3928 had a higher binding affinity for the C allele than the G allele for the rs1530865 miRSNP which was validated by reporter gene assays. Similarly, miR-2116 and miR-889 had a higher affinity for the A than C allele of the rs2357637 miRSNP. Overexpression of miR-3916 and miR-3125 decreased PDK1 protein levels in cells expressing the rs1530865 SNP C allele, and miR-2116 reduced in cells with the rs2357637 SNP A allele.

The present study is the first to report the regulation of the PDK1 gene by miRNAs in an allele-dependent manner and highlights the role of PDK1 in metabolic adaption associated with PCa progression.

The present study is the first to report the regulation of the PDK1 gene by miRNAs in an allele-dependent manner and highlights the role of PDK1 in metabolic adaption associated with PCa progression.

The extent of exposure to occupational carcinogens is not well characterized in Iran, and little is known about the burden of occupational cancer.

This study aimed to describe exposure to occupational carcinogens and occupational epidemiology studies in Iran.

Relevant studies up to January 2021 in Iran were identified through three databases (PubMed, Web of Science, and Google Scholar).

Forty-nine publications from 2009 to 2020 (one cohort, 11 case-control, 34 exposure monitoring studies, and three cancer burden studies) were included. The exposure monitoring studies were conducted mainly in the petroleum industry, metal industry, manufacturing of electronics, manufacturing of plastics, construction industry, and service industry. A few of the case-control studies also reported increased risk of cancers in relation to work in those industries.

Occupational cancer epidemiology in Iran is at an early stage. Both epidemiological and exposure monitoring studies are generally limited in size to provide robust evidence of occupational cancer risks. A coherent strategy to estimate the occupational cancer burden in Iran should start with conducting epidemiological studies along with systematic monitoring of occupational carcinogens for use in hazard control and research.

Occupational cancer epidemiology in Iran is at an early stage. Both epidemiological and exposure monitoring studies are generally limited in size to provide robust evidence of occupational cancer risks. A coherent strategy to estimate the occupational cancer burden in Iran should start with conducting epidemiological studies along with systematic monitoring of occupational carcinogens for use in hazard control and research.DNA methylation is the most widely studied mechanism of epigenetic modification, which can influence gene expression without alterations in DNA sequences. Aberrations in DNA methylation are known to play a role in carcinogenesis, and methylation profiling has enabled the identification of biomarkers of potential clinical interest for several cancers. For vulvar squamous cell carcinoma (VSCC), however, methylation profiling remains an under-studied area. We sought to identify differentially methylated genes (DMGs) in VSCC, by performing Infinium MethylationEPIC BeadChip (Illumina) array sequencing, on a set of primary VSCC (n = 18), and normal vulvar tissue from women with no history of vulvar (pre)malignancies (n = 6). Using a false-discovery rate of 0.05, beta-difference (Δβ) of ±0.5, and CpG-island probes as cut-offs, 199 DMGs (195 hyper-methylated, 4 hypo-methylated) were identified for VSCC. Most of the hyper-methylated genes were found to be involved in transcription regulator activity, indicating that disruption of this process plays a vital role in VSCC development. The majority of VSCCs harbored amplifications of chromosomes 3, 8, and 9. We identified a set of DMGs in this exploratory, hypothesis-generating study, which we hope will facilitate epigenetic profiling of VSCCs. check details Prognostic relevance of these DMGs deserves further exploration in larger cohorts of VSCC and its precursor lesions.Targeting non-apoptotic modalities might be therapeutically promising in diffuse large B cell lymphoma (DLBCL) patients with compromised apoptotic pathways. Thymoquinone (TQ) has been reported to promote apoptosis in cancer cells, but little is known about its effect on non-apoptotic pathways. This work investigates TQ selectivity against DLBCL cell lines and the cell death mechanisms. TQ reduces cell viability and kills cell lines with minimal toxicity on normal hematological cells. link2 Mechanistically, TQ promotes the mitochondrial caspase pathway and increases genotoxicity. However, insensitivity of most cell lines to caspase inhibition by z-VAD-fmk (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone) pointed to a critical role of non-apoptotic signaling. In cells dying through non-apoptotic death, TQ increases endoplasmic reticulum (ER) stress markers and substantially increases cytosolic calcium ([Ca2+]c) through ER calcium depletion and activation of store-operated calcium entry (SOCE). Chelation of [Ca2+]c, but not SOCE inhibitors, reduces TQ-induced non-apoptotic cell death, highlighting the critical role of calcium in a non-apoptotic effect of TQ. Investigations showed that TQ-induced [Ca2+]c signaling is primarily initiated by necroptosis upstream to SOCE, and inhibition necroptosis by necrostatin-1 alone or with z-VAD-fmk blocks the cell death. Finally, TQ exhibits an improved selectivity profile over standard chemotherapy agents, suggesting a therapeutic relevance of the pro-necroptotic effect of TQ as a fail-safe mechanism for DLBCL therapies targeting apoptosis.The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evidence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infiltrative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that therapeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to completely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-up studies.Motility is an inherent characteristic of living cells manifesting cell migration, a fundamental mechanism of survival and development [...].The World Health Organisation's (WHO) classification of brain tumors requires consideration of both histological appearance and molecular characteristics. link3 Possible differences in brain energy metabolism could be important in designing future therapeutic strategies. Forty-three patients with primary, isocitrate dehydrogenase 1 (IDH1) wild type glioblastomas (GBMs) were included in this study. Pre-operative standard MRI was obtained with additional phosphorous magnetic resonance spectroscopy (31-P-MRS) imaging. Following microsurgical resection of the tumors, biopsy specimens underwent neuropathological diagnostics including standard molecular diagnosis. The spectroscopy results were correlated with epidermal growth factor (EGFR) and O6-Methylguanine-DNA methyltransferase (MGMT) status. EGFR amplified tumors had significantly lower phosphocreatine (PCr) to adenosine triphosphate (ATP)-PCr/ATP and PCr to inorganic phosphate (Pi)-PCr/Pi ratios, and higher Pi/ATP and phosphomonoesters (PME) to phosphodiesters (PDE)-PME/PDE ratio than those without the amplification.

Autoři článku: Berthelsenbroberg7838 (Lauritzen Knudsen)