Benjaminraymond9325

Z Iurium Wiki

Caves and other subterranean habitats fulfill the requirements of experimental model systems to address general questions in ecology and evolution. Yet, the harsh working conditions of these environments and the uniqueness of the subterranean organisms have challenged most attempts to pursuit standardized research.Two main obstacles have synergistically hampered previous attempts. First, there is a habitat impediment related to the objective difficulties of exploring subterranean habitats and our inability to access the network of fissures that represents the elective habitat for the so-called "cave species." Second, there is a biological impediment illustrated by the rarity of most subterranean species and their low physiological tolerance, often limiting sample size and complicating laboratory experiments.We explore the advantages and disadvantages of four general experimental setups (in situ, quasi in situ, ex situ, and in silico) in the light of habitat and biological impediments. We also discuss the potential of indirect approaches to research. Furthermore, using bibliometric data, we provide a quantitative overview of the model organisms that scientists have exploited in the study of subterranean life.Our over-arching goal is to promote caves as model systems where one can perform standardized scientific research. This is important not only to achieve an in-depth understanding of the functioning of subterranean ecosystems but also to fully exploit their long-discussed potential in addressing general scientific questions with implications beyond the boundaries of this discipline.The complexity and magnitude of threats to black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros conservation in Africa have triggered global concerns and actions. In this study, we analyzed (i) threats to rhinoceros conservation including external shocks, (ii) historical rhinoceros conservation strategies in Zimbabwe and Africa, more broadly, and (iii) opportunities for enhanced rhinoceros conservation in Zimbabwe and Africa. A literature search from 1975 to 2020 was carried out using a predefined search protocol, involving a number of filters based on a set of keywords to balance search sensitivity with specificity. A total of 193 articles, which were most relevant to key themes on rhinoceros conservation, were used in this study. The common threats to rhinoceros conservation identified in this paper include poaching, habitat fragmentation and loss, international trade in illegal rhino products, and external shocks such as global financial recessions and pandemics. Cascading effects emanating from these threats include small and isolated populations, which are prone to genetic, demographic, and environmental uncertainties. Rhinoceros conservation strategies being implemented include education and awareness campaigns, better equipped and more antipoaching efforts, use of innovative systems and technologies, dehorning, and enhancing safety nets, and livelihoods of local communities. Opportunities for rhinoceros conservation vary across the spatial scale, and these include (a) a well-coordinated stakeholder and community involvement, (b) strategic meta-population management, (c) enhancing law enforcement initiatives through incorporating real-time surveillance technologies and intruder detection sensor networks for crime detection, (d) scaling up demand reduction awareness campaigns, and (e) developing more certified wildlife crime and forensic laboratories, and information repository for international corporation.

Global animal populations are in decline due to destruction and degradation of their natural habitat. Understanding the factors that determine the distribution and density of threatened animal populations is therefore now a crucial component of their study and conservation. The Cheirogaleidae are a diverse family of small-bodied, nocturnal lemurs that are widespread throughout the forests of Madagascar. However, many cheirogaleid lemurs are now highly threatened with extinction and the environmental factors that determine their distribution and population density are still little known. Here, I investigated the environmental drivers of Cheirogaleidae population density at genus level.

Various forest sites across Madagascar.

I investigated how six environmental variables affect Cheirogaleidae population density at the genus level via random-effect meta-analyses. I then used a generalized linear mixed-effects model to identify the primary predictors of Cheirogaleidae population density. Roscovitine solubility dmso Finally, I investins and implement successful conservation.

The results of this study are highly encouraging for the conservation of the Cheirogaleidae and highlight the remarkable resilience of these lemurs to habitat degradation and anthropogenic activity. However, this study also outlines the dearth of knowledge that we have for many species, and why these data are urgently needed to understand the biogeography and ecology of threatened animal populations and implement successful conservation.Continuum limits in the form of stochastic differential equations are typically used in theoretical population genetics to account for genetic drift or more generally, inherent randomness of the model. In evolutionary game theory and theoretical ecology, however, this method is used less frequently to study demographic stochasticity. Here, we review the use of continuum limits in ecology and evolution. Starting with an individual-based model, we derive a large population size limit, a (stochastic) differential equation which is called continuum limit. By example of the Wright-Fisher diffusion, we outline how to compute the stationary distribution, the fixation probability of a certain type, and the mean extinction time using the continuum limit. In the context of the logistic growth equation, we approximate the quasi-stationary distribution in a finite population.Dead animal biomass (carrion) is present in all terrestrial ecosystems, and its consumption, decomposition, and dispersal can have measurable effects on vertebrates, invertebrates, microbes, parasites, plants, and soil. But despite the number of studies examining the influence of carrion on food webs, there has been no attempt to identify how general ecological processes around carrion might be used as an ecosystem indicator. We suggest that knowledge of scavenging and decomposition rates, scavenger diversity, abundance, and behavior around carrion, along with assessments of vegetation, soil, microbe, and parasite presence, can be used individually or in combination to understand food web dynamics. Monitoring carrion could also assist comparisons of ecosystem processes among terrestrial landscapes and biomes. Although there is outstanding research needed to fully integrate carrion ecology and monitoring into ecosystem management, we see great potential in using carrion as an ecosystem indicator of an intact and functional food web.Although speciation dynamics have been described for several taxonomic groups in distinct geographic regions, most macroevolutionary studies still lack a detailed mechanistic view on how or why speciation rates change. To help partially fill this gap, we suggest that the interaction between the time taken by a species to geographically expand and the time populations take to evolve reproductive isolation should be considered when we are trying to understand macroevolutionary patterns. We introduce a simple conceptual index to guide our discussion on how demographic and microevolutionary processes might produce speciation dynamics at macroevolutionary scales. Our framework is developed under different scenarios when speciation is mediated by geographical or resource-partitioning opportunities, and when diversity is limited or not. We also discuss how organismal intrinsic properties and different overall geographical settings can influence the tempo and mode of speciation. We argue that specific conditions observed at the microscale might produce a pulse in speciation rates even without a pulse in either climate or physical barriers. We also propose a hypothesis to reconcile the apparent inconsistency between speciation measured at the microscale and macroscale, and emphasize that diversification rates are better seen as an emergent property. We hope to bring the reader's attention to interesting mechanisms to be further studied, to motivate the development of new theoretical models that connect microevolution and macroevolution, and to inspire new empirical and methodological approaches to more adequately investigate speciation dynamics either using neontological or paleontological data.Evidence of the effects of agriculture on natural systems is widespread, but potential evolutionary responses in nontarget species are largely uncharacterized. To explore whether exposure to agrochemicals may influence selective pressures and phenotypic expression in nonagricultural plant populations, we characterized the expression of putative antiherbivore defense phenotypes in three nonagricultural species found upstream and downstream of irrigated rice fields in Guanacaste Province, Costa Rica. We found that plants downstream of chemically intensive agriculture showed shifts toward reduced expression of putative antiherbivore defenses relative to upstream counterparts. In two of three tested species, leaf extracts from downstream plants were more palatable to a generalist consumer, suggesting a possible reduction of chemical defenses. In one species with multiple modes of putative defenses, we observed parallel reductions of three metrics of putative biotic and physical defenses. These reductions were concurrent with reduced herbivore damage on downstream plants. Together, these results suggest that agriculture has the potential to alter intraspecific phenotypic expression, ecological interactions, and natural selection in nontarget plant populations.Vector-borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit-colonizing yeast in a tripartite symbiosis-the so-called "killer yeast" system. "Killer yeast" consists of Saccharomyces cerevisiae yeast hosting two double-stranded RNA viruses (M satellite dsRNAs, L-A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing "killer yeast" phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non-killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.

Autoři článku: Benjaminraymond9325 (Bilde Sawyer)