Bakerburns7981

Z Iurium Wiki

The physicochemical properties, structural features and structure-immunomodulatory activity relationship of pectic polysaccharides from the white asparagus (Asparagus officinalis L.) skin were systematically studied. Using sequential ethanol precipitation, five sub-fractions namely WASP-40, WASP-50, WASP-60, WASP-70 and WASP-80 with distinct degree of esterification (DE) and molecular weight (Mw) were obtained. The Mw and DE values were decreased with the increase of the ethanol concentrations. Structurally, although 4-α-D-GalpA was the dominant sugar residue in all fractions, the molar ratios were decreased, whereas other sugar residues including arabinose- and mannose-based sugar residues overall increased with the increase of ethanol concentration. In addition, the effects of sub-fractions on the RAW 264.7 cells indicated that pectic polysaccharides with the higher DE value showed a stronger immunomodulatory activity. Moreover, the structure-activity relationship was also discussed in this study, which extends the value-added application of asparagus and its processing by-products.Marine sulfated polysaccharides have aroused widespread concern for their various structures and bioactivities. Peroxide depolymerization is a common strategy in analysis of structures and structure-activity relationships of polysaccharides. However, confirming the depolymerization process and exact structures of the degradation products is still a considerable challenge. This study reported the structures of a fucan sulfate (FS) from sea cucumber Stichopus herrmanni and its depolymerized products (dFS) prepared by peroxide degradation. The FS was elucidated with a highly regular structure, -3)-L-Fuc2S-(α1-n. Structure analysis of oligosaccharides purified from dFS suggested that peroxide degradation involved in cleavage of glycosidic bonds and oxidative modification of reducing end of sugar residue, while no break in sugar ring was observed. Both FS and series of dFSs exhibited significant anticoagulant activities due to their anti-thrombin effects in presence of heparin cofactor II and their potencies were related to their molecular sizes, dFS with ∼ 20 kDa showed the strongest activity.This study questioned whether rheological properties can predict drug (metronidazole) release from Hydroxypropylcellulose (HPC) platforms. Viscometric and viscoelastic properties of aqueous, alcohols/diols and mixed solvent HPC solutions and gels were determined using viscometry and oscillatory analysis. Drug release was conducted at pH 7.4 under sink conditions. Relationships between rheological parameters and drug release were modelled using multiple linear stepwise regression. Viscometry identified ethanol and water as good solvents for HPC. Diol solvents were predicted to exhibit greater interactions with HPC (COSMO modelling) but possessed lowest intrinsic viscosities. Pentanediol or ethylene glycol prepared gels exhibited greatest elasticity. No relationships were observed between dilute solution properties and initial gel viscoelasticity. Drug release from HPC gels occurred via gel erosion and diffusion. No relationships were observed between initial gel viscoelasticity and drug release and thus, for gel platforms that undergo erosion in aqueous media, drug release cannot be predicted from initial gel viscoelasticity.A combined enzymatic treatment/acid hydrolysis technique was utilized to synthesize cellulose nanocrystals (CNCs) from sugar beet pulp. CNCs were functionalized with magnetite nanoparticles and dopamine making a versatile nano-carrier (DA/Fe3O4NPs@CNCs) for covalent enzyme immobilization. Oxygene/amine functionalities, high magnetization value, and specific surface area of DA/Fe3O4NPs@CNCs made it a reusable and green candidate for conjugation to hydrolytic enzyme cocktails (three cellulases, two hemicellulases, and their combinations) to prepare an innovative and practical nano-biocatalyst for biomass conversion. The conjugated enzymes showed an enhanced optimum temperature (∼ 10 °C), improved thermal stability, and shifted optimum pH toward alkaline pHs. Oxaliplatin Covalent attachment could successfully suppress the enzyme leaching and provide easy recovery/reuse of the nano-biocatalyst up to 10 cycles, with > 50% of initial activity. Application of the nano-biocatalyst in hydrolysis of rice straw and sugar beet pulp showed an increase (20-76%) in the yield of fermentable sugars compared to the free enzyme cocktails.Cellulose nanofibers (CNF) are renewable and biodegradable nanomaterials with attractive barrier, mechanical and surface properties. In this work, three different recombinant enzymes an endoglucanase, a xylanase and a lytic polysaccharide monooxygenase, were combined to enhance cellulose fibrillation and to produce CNF from sugarcane bagasse (SCB). Prior to the enzymatic catalysis, SCB was chemically pretreated by sodium chlorite and KOH, while defibrillation was accomplished via sonication. We obtained much longer (μm scale length) and more thermostable (resisting up to 260 °C) CNFs as compared to the CNFs prepared by TEMPO-mediated oxidation. Our results showed that a cooperative action of the set of hydrolytic and oxidative enzymes can be used as a "green" treatment prior to the sonication step to produce nanofibrillated cellulose with advanced properties.Ion-imprinting strategy was utilized in the development of UO2(II) imprinted amidoxime modified chitosan sorbent (U-AOCS) that can selectively remove UO2(II) from water. First, cyanoactic acid was linked to the chitosan -NH2 groups and then the inserted -CN groups were converted into amidoxime moieties, which chelate the UO2(II) ions and then the polymer chains were cross-linked by glyoxal. The UO2(II) ions have been then eluted leaving their matching recognition sites. The prepared U-AOCS along with the control NIP displayed maximum capacities toward the UO2(II) ions around 332 and 186 mg/g, respectively, and the isotherms were interpreted better by the Langmuir model in both adsorbents. Moreover, the selective uptake of the uranyl ions in multi-ionic aqueous solutions containing the tetravalent Th(IV) ions, trivalent Al(III), Eu(III), and Fe(III) ions, beside the divalent Pb(II), Co(II), Ni(II), Cu(II) ions confirmed the successful creation of a considerable UO2(II) ions selectivity in the U-AOCS construction.

Autoři článku: Bakerburns7981 (Simon Branch)