Zhousumner7290

Z Iurium Wiki

Methane is a greenhouse gas that can be released from sludge anaerobic fermentation in wastewater treatment plants. Methane is also an alternative additional carbon source for deep nitrate removal of secondary effluent. A sequencing experiment was conducted to study the efficacy of nitrate removal with methane as the sole carbon source. The maximum nitrate removal rate was 17.2 mg-N·L-1·d-1. Nitrate removal was confirmed to arise via two pathways aerobic methane oxidation coupled to denitrification (AME-D) contributed to 55% of the nitrate removal with the rest stemming from assimilation by methanotrophs. Additional study revealed that nitrate assimilated by methanotrophs was used for the synthesis of proteins, resulting in a protein content of 52.2% dry weight. Metagenomic sequencing revealed a high abundance of nitrate assimilation and glutamine synthetase genes, which were primarily provided by methanotrophs (mainly Methylomonas). Assimilatory nitrate removal by methanotrophs has a high potential for advanced nitrogen removal and for alleviating methane emissions. The nitrogen-rich biomass produced by nitrate absorption could also be used as a biofertilizer for nitrogen recycling.Ambient or ground-level ozone (O3), a key player in atmospheric chemistry, has been studied extensively throughout the world in recent decades due to its harmful effects on human health and the environment. The aim of this study is to examine in detail the time patterns of O3 in the Czech Republic, a Central European country with a long-term history of ambient air pollution. We have examined the interplay between annual trends and within-a-year seasonality in daily O3 concentrations at twelve stations representing different environments, geographical regions and altitudes in the Czech Republic in 1993-2018. We base our analysis on a generalised additive model (GAM) framework as a modern regression approach suitable for addressing non-linear trend shapes in a formalised and unified way. In particular, we use penalised splines. The inconsistent behaviour of the stations prior to 1998, two local maxima around 2003 and 2006 and a steady increase in O3 at all sites from 2014 to the present are the main features of our study. A seasonality O3 pattern with a clear maximum in May-June is similar for all stations. In parallel with the O3 concentration changes over the years, the deformation of seasonality profiles over a long period of time occurs, resulting in a shift of the peak O3 concentrations towards later days in the year. Our statistical modelling offers a detailed view of both long-term trend and seasonality components separately. Additionally, in a model with trend*seasonality interaction, we are able to study the gradual deformation of the seasonality profile over the years. Capsule Our analysis of daily mean O3 concentrations at twelve Czech sites in 1993-2018 revealed a steady increase in O3 from 2014 and deformation of the seasonality O3 profiles over the year.Nano-zero-valent iron has been used in combination with a variety of support carriers to remove heavy metals in solution. However, pre-treatment of the carrier can reflect a better synergistic effect and thus achieve high heavy metal removal capabilities. In this study, the hydrophilic biochar obtained by an acid ammonium persulfate oxidation has an adsorption capacity of up to 135.4 mg g-1 for Pb2+ (25 °C, pH = 6 with adsorbent amount of 10 mg and Pb2+ concentration of 50 mg L-1). Due to the strong Fe-C-O covalent bond, nZVI increases the binding force with the carbon matrix. Sodium dichloroacetate manufacturer Benefitting from the high specific surface area, porous structure and rich oxygen-containing functional groups, the resultant nZVI-HPB samples are favourable for Pb2+ diffusion and adsorption, exhibiting maximum adsorption capacity of 480.9 mg g-1 (pH = 6, 25 °C with adsorbent amount of 10 mg and Pb2+ concentration of 200 mg L-1). The multiple interaction mechanisms in the Pb2+ removal process such as the reduction reaction, complexation and co-precipitation proceed simultaneously are concluded by the analyses of Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectra.The environmental fate of the recalcitrant organic chlorine insecticide lindane and its removal from contaminated soils are still of great concern. However, the key factors influencing microbial removal of lindane from paddy soils with intermittent flooding and draining remain largely unknown. Here, we conducted laboratory experiments to investigated lindane biodegradation in different layers of typical acidic paddy soils under different water managements and bioremediation strategies, together with the changes of functional bacterial consortium, key genes and metabolic pathways. It was found that under flooded conditions, lindane spiking significantly stimulated the growth of some bacterial genera with potential anaerobic catabolic functions in both top- (0-20 cm depth) and subsoil (20-40 cm depth), leading to the shortest half-life of lindane with 7.6-9.0 d in the topsoil. In contrary, lindane spiking dramatically stimulated the growth of bacterial members with aerobic catabolic functions under drained conditions, exhibiting half-lives of lindane with 85-131 d and 18-23 d in the top- and subsoil, respectively. Overall, biostimulation coupled with flooding management would be the better combination for increased lindane bioremediation. Functional genes involved in lindane degradation and retrieved from metagenomic data further supported the anaerobic and aerobic biodegradation of lindane under flooded and drained conditions, respectively. Moreover, the integrated network analysis suggested water management and organic matter were the primary factors shaped the assembly of functional bacteria in lindane degradation, among which Clostridium and Rhodanobacter were the key anaerobic and aerobic functional genera, respectively. Taken together, our study provides a comprehensive understanding of lindane biodegradation in distinct layers of acidic paddy soils that were combinedly affected by different water managements and bioremediation strategies.

Autoři článku: Zhousumner7290 (Hermansen Dam)