Xuernstsen1709
Transcriptomes of both petal parts were de novo assembled and three candidate genes for chalcone reductase (CHR) were identified. None of them showed a significantly higher expression in the yellow base compared to the white tips. In summary, it was shown that the bicolouration is most likely caused by a bottleneck in chalcone formation in the white tip. The relative prevalence of flavones compared to the anthochlors in the white tips could be an indication for the presence of a so far unknown differentially expressed CHR.Magnetic resonance imaging (MRI) is an increasingly important tool for the diagnosis and treatment of prostate cancer. However, interpretation of MRI suffers from high inter-observer variability across radiologists, thereby contributing to missed clinically significant cancers, overdiagnosed low-risk cancers, and frequent false positives. Interpretation of MRI could be greatly improved by providing radiologists with an answer key that clearly shows cancer locations on MRI. Registration of histopathology images from patients who had radical prostatectomy to pre-operative MRI allows such mapping of ground truth cancer labels onto MRI. However, traditional MRI-histopathology registration approaches are computationally expensive and require careful choices of the cost function and registration hyperparameters. This paper presents ProsRegNet, a deep learning-based pipeline to accelerate and simplify MRI-histopathology image registration in prostate cancer. Our pipeline consists of image preprocessing, estimation of affine and deformable transformations by deep neural networks, and mapping cancer labels from histopathology images onto MRI using estimated transformations. We trained our neural network using MR and histopathology images of 99 patients from our internal cohort (Cohort 1) and evaluated its performance using 53 patients from three different cohorts (an additional 12 from Cohort 1 and 41 from two public cohorts). Results show that our deep learning pipeline has achieved more accurate registration results and is at least 20 times faster than a state-of-the-art registration algorithm. This important advance will provide radiologists with highly accurate prostate MRI answer keys, thereby facilitating improvements in the detection of prostate cancer on MRI. Our code is freely available at https//github.com/pimed//ProsRegNet.The eye affords a unique opportunity to inspect a rich part of the human microvasculature non-invasively via retinal imaging. Retinal blood vessel segmentation and classification are prime steps for the diagnosis and risk assessment of microvascular and systemic diseases. A high volume of techniques based on deep learning have been published in recent years. In this context, we review 158 papers published between 2012 and 2020, focussing on methods based on machine and deep learning (DL) for automatic vessel segmentation and classification for fundus camera images. We divide the methods into various classes by task (segmentation or artery-vein classification), technique (supervised or unsupervised, deep and non-deep learning, hand-crafted methods) and more specific algorithms (e.g. multiscale, morphology). We discuss advantages and limitations, and include tables summarising results at-a-glance. Finally, we attempt to assess the quantitative merit of DL methods in terms of accuracy improvement compared to other methods. The results allow us to offer our views on the outlook for vessel segmentation and classification for fundus camera images.Supervised learning-based segmentation methods typically require a large number of annotated training data to generalize well at test time. In medical applications, curating such datasets is not a favourable option because acquiring a large number of annotated samples from experts is time-consuming and expensive. Consequently, numerous methods have been proposed in the literature for learning with limited annotated examples. Unfortunately, the proposed approaches in the literature have not yet yielded significant gains over random data augmentation for image segmentation, where random augmentations themselves do not yield high accuracy. In this work, we propose a novel task-driven data augmentation method for learning with limited labeled data where the synthetic data generator, is optimized for the segmentation task. The generator of the proposed method models intensity and shape variations using two sets of transformations, as additive intensity transformations and deformation fields. Both transformations are optimized using labeled as well as unlabeled examples in a semi-supervised framework. Our experiments on three medical datasets, namely cardiac, prostate and pancreas, show that the proposed approach significantly outperforms standard augmentation and semi-supervised approaches for image segmentation in the limited annotation setting. Inhibitor Library high throughput The code is made publicly available at https//github.com/krishnabits001/task_driven_data_augmentation.Motion degradation is a central problem in Magnetic Resonance Imaging (MRI). This work addresses the problem of how to obtain higher quality, super-resolved motion-free reconstructions from highly undersampled MRI data. In this work, we present for the first time a variational multi-task framework that allows joining three relevant tasks in MRI reconstruction, registration and super-resolution. Our framework takes a set of multiple undersampled MR acquisitions corrupted by motion into a novel multi-task optimisation model, which is composed of an L2 fidelity term that allows sharing representation between tasks, super-resolution foundations and hyperelastic deformations to model biological tissue behaviors. We demonstrate that this combination yields significant improvements over sequential models and other bi-task methods. Our results exhibit fine details and compensate for motion producing sharp and highly textured images compared to state of the art methods while keeping low CPU time. Our improvements are appraised on both clinical assessment and statistical analysis.Relapsed or refractory (R/R) acute myeloid leukemia (AML) has a poor prognosis, and new therapies are a major clinical need. When mutated, FLT3 drives neoplastic cell proliferation. New drugs (i.e., tyrosine kinase inhibitors, TKIs) showed effectiveness in FLT3-AML and promise to change disease history and outcome. We evaluated the benefit conferred by TKIs in terms of survival, burden of complications and surrogate endpoint of quality of life in a retrospective cohort of 49 FLT3 positive, R/R AML patients. Patients who received TKIs were compared to those treated with conventional chemotherapy. Treatment with TKIs conferred a better OS and wea associated with a lower burden and severity of adverse events. Importantly, patients who received TKIs showed reduced time of hospitalization. In conclusion, treatment with TKI in R/R FLT3-AML was related to a better survival, less and milder AEs, and shorter hospitalization.