Wyattdanielsen4193
Nanoscale materials, when compared to their bulk components, possess unique properties. In particular, shifts in phase transitions can occur for submicrometer particles. For instance, small particles do not undergo the process of liquid-liquid phase separation (LLPS). LLPS has applications in emulsions such as Janus particles, controllable morphology to create drug-rich phases during drug delivery, and is often observed in atmospheric aqueous aerosol particles. In atmospheric particles, LLPS is tracked as a function of particle water activity, which is equivalent to the relative humidity (RH) at equilibrium. We probed three organic/inorganic aerosol systems in the range of RH over which phase separation occurs (SRH). Our findings indicate that SRH for submicrometer aerosol particles is lower than for micrometer-sized droplets. These findings show that it may be necessary to update the representation of phase transitions in aerosol particles in climate models. The vast majority of organic/inorganic aerosol particles have submicrometer diameters, and a decrease in SRH for submicrometer particles indicates that the current estimation of phase-separated aerosols may be overestimated. Furthermore, understanding the properties of LLPS at the nanoscale can provide key parameters to describe these systems and may lead to better control of phase separation in submicrometer particles.A new synthetic approach toward oligosaccharides consisting only of 2,3,6-trideoxypyranoglycosides is reported. The key feature is highlighted by the convergent approach that allows the introduction of the aglycon moiety in the late stage of the synthesis. As an illustrative example, the tetrasaccharide portion of cervimycin K was prepared as cyclohexyl glycoside.Exploring novel p-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors has become one of the most promising research directions in herbicide innovation. On the basis of our tremendous interest in exploiting more powerful HPPD inhibitors, we designed a family of benzyl-containing triketone-aminopyridines via a structure-based drug design (SBDD) strategy and then synthesized them. Among these prepared derivatives, the best active 3-hydroxy-2-(3,5,6-trichloro-4-((4-isopropylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one (23, IC50 = 0.047 μM) exhibited a 5.8-fold enhancement in inhibiting Arabidopsis thaliana (At) HPPD activity over that of commercial mesotrione (IC50 = 0.273 μM). The predicted docking models and calculated energy contributions of the key residues for small molecules suggested that an additional π-π stacking interaction with Phe-392 and hydrophobic contacts with Met-335 and Pro-384 were detected in AtHPPD upon the binding of the best active compound 23 compared with that of the reference mesotrione. Such a molecular mechanism and the resulting binding affinities coincide with the proposed design scheme and experimental values. It is noteworthy that inhibitors 16 (3-hydroxy-2-(3,5,6-trichloro-4-((4-chlorobenzyl)amino)picolinoyl)cyclohex-2-en-1-one), 22 (3-hydroxy-2-(3,5,6-trichloro-4-((4-methylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one), and 23 displayed excellent greenhouse herbicidal effects at 150 g of active ingredient (ai)/ha after postemergence treatment. Furthermore, compound 16 showed superior weed-controlling efficacy against Setaria viridis (S. viridis) versus that of the positive control mesotrione at multiple test dosages (120, 60, and 30 g ai/ha). These findings imply that compound 16, as a novel lead of HPPD inhibitors, possesses great potential for application in specifically combating the malignant weed S. viridis.Representation of electrostatic interactions by a Coulombic pairwise potential between atom-centered partial charges is a fundamental and crucial part of empirical force fields used in classical molecular dynamics simulations. The broad success of the AMBER force-field family originates mainly from the restrained electrostatic potential (RESP) charge model, which derives partial charges to reproduce the electrostatic field around the molecules. However, the description of the electrostatic potential around molecules by standard RESP may be biased for some types of molecules. In this study, we modified the RESP charge derivation model to improve its description of the electrostatic potential around molecules and thus electrostatic interactions in the force field. In particular, we reoptimized the atomic radii for definition of the grid points around the molecule, redesigned the restraining scheme, and included extra point (EP) charges. The RESP fitting was significantly improved for aromatic heterocyclic molecules. Thus, the suggested W-RESP(-EP) charge derivation model shows some potential for improving the performance of the nucleic acid force fields, for which the poor description of nonbonded interactions, such as the underestimated stability of base pairing, is well-established. We also report some preliminary simulation tests (around 1 ms of simulation data) on A-RNA duplexes, tetranucleotides, and tetraloops. The simulations reveal no adverse effects, while the description of base-pairing interactions might be improved. The new charges can thus be used in future attempts to improve the nucleic acid simulation force fields, in combination with reparametrization of the other terms.Tristetraprolin (TTP) is a nonclassical CCCH zinc finger protein that regulates inflammation. TTP targets AU-rich RNA sequences of cytokine mRNAs forming a TTP/mRNA complex. This complex is then degraded, switching off the inflammatory response. Cadmium, a known carcinogen, triggers proinflammatory effects, and there is evidence that Cd increases TTP expression in cells, suggesting that Zn-TTP may be a target for cadmium toxicity. We sought to determine whether Cd exchanges with Zn in the TTP active site and measure the effect of RNA binding on this exchange. A construct of TTP that contains the two CCCH domains (TTP-2D) was employed to investigate these interactions. A spin-filter ICP-MS experiment to quantify the metal that is bound to the ZF after metal exchange was performed, and it was determined that Cd exchanges with Zn in Zn2-TTP-2D and that Zn exchanges with Cd in Cd2-TTP-2D. A native ESI-MS experiment to identify the metal-ZF complexes formed after metal exchange was performed, and M-TTP-2D complexes with singular and double metal exchange were observed. Metal exchange was measured in both the absence and presence of TTP's partner RNA, with retention of RNA binding. These data show that Cd can exchange with Zn in TTP without affecting function.BRAF is an important component of MAPK cascade. Mutation of BRAF, in particular V600E, leads to hyperactivation of the MAPK pathway and uncontrolled cellular growth. Resistance to selective inhibitors of mutated BRAF is a major obstacle against treatment of many cancer types. In this work, a series of new (imidazo[2,1-b]thiazol-5-yl)pyrimidine derivatives possessing a terminal sulfonamide moiety were synthesized. Pan-RAF inhibitory effect of the new series was investigated, and structure-activity relationship is discussed. Antiproliferative activity of the target compounds was tested against the NCI-60 cell line panel. The most active compounds were further tested to obtain their IC50 values against cancer cells. Compound 27c with terminal open chain sulfonamide and 38a with a cyclic sulfamide moiety showed the highest activity in enzymatic and cellular assay, and both compounds were able to inhibit phosphorylation of MEK and ERK. Compound 38a was selected for testing its in vivo activity against melanoma. Cellular and animal activities are reported.Plant homeodomain finger protein 1 (PHF1) is an accessory component of the gene silencing complex polycomb repressive complex 2 and recognizes the active chromatin mark, trimethylated lysine 36 of histone H3 (H3K36me3). In addition to its role in transcriptional regulation, PHF1 has been implicated as a driver of endometrial stromal sarcoma and fibromyxoid tumors. We report the discovery and characterization of UNC6641, a peptidomimetic antagonist of the PHF1 Tudor domain which was optimized through in silico modeling and incorporation of non-natural amino acids. UNC6641 binds the PHF1 Tudor domain with a Kd value of 0.96 ± 0.03 μM while also binding the related protein PHF19 with similar potency. A crystal structure of PHF1 in complex with UNC6641, along with NMR and site-directed mutagenesis data, provided insight into the binding mechanism and requirements for binding. Additionally, UNC6641 enabled the development of a high-throughput assay to identify small molecule binders of PHF1.Nanocrystalline anatase TiO2 is a robust model anode for Li insertion in batteries. The influence of nanocrystal size on the equilibrium potential and kinetics of Li insertion is investigated with in operando spectroelectrochemistry of thin film electrodes. Distinct visible and infrared responses correlate with Li insertion and electron accumulation, respectively, and these optical signals are used to deconvolute bulk Li insertion from other electrochemical responses, such as double-layer capacitance, pseudocapacitance, and electrolyte leakage. Electrochemical titration and phase-field simulations reveal that a difference in surface energies between anatase and lithiated phases of TiO2 systematically tunes the Li-insertion potentials with the particle size. However, the particle size does not affect the kinetics of Li insertion in ensemble electrodes. Rather, the Li-insertion rates depend on the applied overpotential, electrolyte concentration, and initial state of charge. We conclude that Li diffusivity and phase propagation are not rate limiting during Li insertion in TiO2 nanocrystals. Both of these processes occur rapidly once the transformation between the low-Li anatase and high-Li orthorhombic phases begins in a particle. Instead, discontinuous kinetics of Li accumulation in TiO2 particles prior to the phase transformations limits (dis)charging rates. We demonstrate a practical means to deconvolute the nonequilibrium charging behavior in nanocrystalline electrodes through a combination of colloidal synthesis, phase field simulations, and spectroelectrochemistry.This study used ZnO nanoparticles (NPs) as seed treatments and as soil amendments to enhance Zn concentrations in wheat grain. In the seed treatment experiment, seeds were treated with dextran coated (DEX-ZnO) and bare ZnO NP suspensions, in addition to ZnSO4, at 500 mg Zn/L. In the soil amendment experiment, soil pH was adjusted to 6 and 8, then soils were spiked with 15 mg Zn/kg soil in the form of DEX-ZnO and bare ZnO NPs, as well as ZnSO4. For the seed treatment, ZnO NPs resulted in significantly higher grain Zn concentration 96.9 ± 25.4 compared to (72.2 ± 25.4), (78.3 ± 24.3), and (81.0 ± 19.4) mg Zn/kg in the control, ZnSO4, and DEX-ZnO NPs treatments, respectively. In the soil amendment experiment, grain Zn concentrations were the same across all Zn treatments regardless of soil pH. Plants grown at pH 6 had higher Zn accumulation and leaf and stem biomass compared to pH 8. This study demonstrates that treatment of seeds with ZnO NPs can enhance Zn content of grain using far less Zn than is typically used for soil amendments. This may help reduce the environmental impact of Zn fertilization.A variety of techniques involving the use of mass spectrometry (MS) have been developed to obtain structural information on proteins and protein complexes. One example of these techniques, surface-induced dissociation (SID), has been used to study the oligomeric state and connectivity of protein complexes. Recently, we demonstrated that appearance energies (AE) could be extracted from SID experiments and that they correlate with structural features of specific protein-protein interfaces. While SID AE provides some structural information, the AE data alone are not sufficient to determine the structures of the complexes. For this reason, we sought to supplement the data with computational modeling, through protein-protein docking. In a previous study, we demonstrated that the scoring of structures generated from protein-protein docking could be improved with the inclusion of SID data; however, this work relied on knowledge of the correct tertiary structure and only built full complexes for a few cases. Here, we performed docking using input structures that require less prior knowledge, using homology models, unbound crystal structures, and bound+perturbed crystal structures. Using flexible ensemble docking (to build primarily subcomplexes from an ensemble of backbone structures), the RMSD100 of all (15/15) predicted structures using the combined Rosetta, cryo-electron microscopy (cryo-EM), and SID score was less than 4 Å, compared to only 7/15 without SID and cryo-EM. Symmetric docking (which used symmetry to build full complexes) resulted in predicted structures with RMSD100 less than 4 Å for 14/15 cases with experimental data, compared to only 5/15 without SID and cryo-EM. Finally, we also developed a confidence metric for which all (26/26) proteins flagged as high confidence were accurately predicted.Most coagulation studies focus on pollutant removal or floc separation efficiency. However, to understand the mechanism of coagulation, it is necessary to explore the behavior of coagulation in terms of the interactions among the functional groups on the surface of the metal hydrolysis precipitates during the hydrolysis process. In this study, for the first time, aluminum sulfate (alum) was used to investigate such interactions over the whole process sequence of hydrolysis, coagulation, and crystallization with, and without (as a control), the presence of specific low molecular weight (LMW) (molecular weight less then 1000 Da) organic compounds with different chemical bonds. It was observed that primary nanoparticles (NPs) of around 10 nm size were produced during the hydrolysis of alum. The presence of organic compounds was found to influence the coagulation performance by affecting the metal hydrolysis and the properties of the nanoparticles. At pH 7, ethylenediaminetetraacetic acid disodium salt (EDTA) delayed the time when the particles start to aggregate but increased the maximum size of the flocs, while citric acid caused the crystallization of amorphous hydrates and inhibited the coagulation performance. In contrast, glucose, benzoic acid (BEN), and tris(hydroxymethyl)aminomethane (THMAM) had no significant effect on the coagulation performance. Therefore, LMW organics can bond to the hydrolysis products of metal ions through key functional groups, such as carboxyl groups, and then affect the coagulation process. The experimental results show that the presence of LMW organics can change the surface properties and degree of crystallization of the primary NPs, thereby affecting the performance of coagulation.ConspectusLoading metal nanoparticles on the surface of solid supports has emerged as an efficient route for the preparation of heterogeneous catalysts. Notably, most of these supported metal nanoparticles still have shortcomings such as dissatisfactory activity and low product selectivity in catalysis. In addition, these metal nanoparticles also suffer from deactivation because of nanoparticle sintering, leaching, and coke formation under harsh conditions. The fixation of metal nanoparticles within zeolite crystals should have advantages of high activities for metal nanoparticles and excellent shape selectivity for zeolite micropores as well as extraordinary stability of metal nanoparticles immobilized with a stable zeolite framework, which is a good solution for the shortcomings of supported metal nanoparticles.Materials with metal nanostructures within the zeolite crystals are normally denoted as metal@zeolite, where the metal nanoparticles with diameters similar to those of industrial catalysts are usuallhe zeolite external surface, the zeolite crystals could form a nanoreactor to efficiently enrich the crucial intermediates, thus boosting the performance in low-temperature methane oxidation. Also, the microporous confinement weakens the adsorption of C1 intermediates on the metal sites, accelerating the C-C coupling to improve C2 oxygenate productivity in syngas conversion. In particular, the zeolite framework efficiently stabilizes the metal nanoparticles against sintering and leaching to give durable catalysts. Clearly, this strategy not only guides the rational design of efficient heterogeneous catalysts for potential applications in a variety of industrial chemical reactions but also accelerates the fundamental understanding of the catalytic mechanisms by providing new model catalysts.While the chemistry of trivalent rare-earth metal hydrido complexes has been well developed in the past 40 years, that of the divalent rare-earth metal hydrido complexes remains in its infancy because of the synthetic challenge of such complexes. In this paper, we report the synthesis and structural characterization of a divalent ytterbium hydrido complex supported by a bulky β-diketiminato-based tetradentate ligand. This hydrido complex is a dimer containing two μ-hydrogen ligands, and it easily undergoes a hydrido shift reaction to form a new divalent ytterbium hydrido complex that contains only one hydrido bridge. Furthermore, this hydrido complex reacts with pyridine and pyridine derivatives, showing versatile reactivity [Yb-H addition to pyridine, hydrido shift to ancillary ligand, and ytterbium(II)-center-induced redox reaction with bipyridine]. This hydrido complex reacts with Ph3P═O, resulting in a P-CPh cleavage of Ph3P═O and an elimination of C6H6; on the other hand, the reaction with Ph3P═S is a hydrido coupling-based redox reaction. The reactions of this hydrido complex with 1 and 2 equiv of PhSSPh clearly indicate that the hydrido coupling-based redox reaction is prior to the ytterbium(II) oxidation-based redox reaction.Air pollution sensors based on organic transistors have attracted much interest recently; however, the devices suffer from low responsivity and slow response and recovery rates for gas analytes. These shortcomings are attributed to the low charge-carrier mobility of organic semiconductors and to a structural limitation resulting from the use of a thick and continuous active layer. In the present work, we investigated the material properties of a multiscale porous zeolitic imidazolate framework, [Zn(2-methylimidazole)2]n (ZIF-8), and examined its potential as an analyte channel material inserted at an organic-transistor active layer. A series of carbonized zeolitic imidazolate frameworks (ZIFs) were prepared by thermal conversion of ZIF-8 and also studied for comparison. The microstructures, morphologies, and optical/electrical characteristics of polythiophene/ZIF-8 hybrid films were systematically investigated. Organic-transistor-type nitrogen dioxide sensors based on the polythiophene/ZIF-8 hybrid films showed substantially improved sensing properties, including responsivity, response rate, and recovery rate. The electrical conductivity of the carbonized ZIF-8s enhanced the field-effect mobility of the organic transistors; however, the sensing performance was not improved, because of the closed pore structures resulting from the carbonization. These results provide invaluable information and useful insights into the design of transistor-type gas sensors based on organic semiconductor/metal-organic framework hybrid films.Dibenzo-7-phosphanorbornadiene-substituted diazene MesN2PA (1, where Mes = mesityl, A = anthracene, or C14H10), a synthetic equivalent of mesitylphosphaazide (MesN2P) and anthracene, was synthesized by treatment of [Ph3BPA][Na(OEt2)2] with [MesN2]OTf (OTf = CF3SO3-) in thawing tetrahydrofuran (14% isolated yield). Treatment of 1 with unsaturated molecules cyclooctyne, [Na(dioxane)2.5][OCP] (phosphaethynolate), and Ad-C≡P (Ad = adamantyl) results in the corresponding [3 + 2] phosphaazide-(phospha)alkyne cycloadducts, with concomitant loss of anthracene in 65%, 49%, and 38% isolated yield, respectively. Structural data for the phosphaethynolate cycloadduct ([3][Na(12-crown-4)2]) were obtained in a single-crystal X-ray diffraction study. A diazatriphosphole was generated by combining 1 with P2A2, a thermally activated anthracene-based molecular precursor to diphosphorus (P2). Thermolysis (33-65 °C) of 1 in benzene-d6 leads to anthracene extrusion. This process has a unimolecular kinetic profile and proceeds with activation parameters of ΔH⧧ = 21.6 ± 0.3 kcal/mol and ΔS⧧= -4.9 ± 0.8 cal/(mol K).The dynamics of peptide-protein binding and unbinding of a variant of the RNase S system has been investigated. To initiate the process, a photoswitchable azobenzene moiety has been covalently linked to the S-peptide, thereby switching its binding affinity to the S-protein. Transient fluorescence quenching was measured with the help of a time-resolved fluorometer, which has been specifically designed for these experiments and is based on inexpensive light-emitting diodes and laser diodes only. One mutant shows on-off behavior with no specific binding detectable in one of the states of the photoswitch. Unbinding is faster by at least 2 orders of magnitude, compared to that of other variants of the RNase S system. We conclude that unbinding is essentially barrier-less in that case, revealing the intrinsic dynamics of the unbinding event, which occurs on a time scale of a few hundred microseconds in a strongly stretched-exponential manner.Although photothermal therapy (PTT) has great potential for tumor inhibition, this single mode of action frequently encounters recurrence and metastasis, highlighting the urgent need for developing combination therapy. Inspired by established evidence that PTT could induce efficient immunogenic cell death (ICD), we here developed a versatile biomimetic nanoplatform (denoted as AuDRM) for the synergism of photothermal/starvation/immunotherapy against cancer. Specifically, dendritic mesoporous silica nanoparticles (NPs) were successfully constructed followed by the in situ synthesis of Au NPs in the mesopores. Afterward, a hybrid membrane was coated to facilitate the loading of R837. Upon efficient accumulation in the tumor tissue by homotypic targeting, the pH-sensitive membrane could be jettisoned to ensure the exposure of Au NPs for starvation therapy and the effective release of the immunostimulator R837 for enhancement of immunotherapy. Except for the PTT-mediated tumor ablation, the induction of ICD coupled with the release of tumor antigens could work synergistically with the immunostimulator R837 for inhibiting the primary tumor as well as the metastasis and induce a long-term immune memory effect for tumor inhibition via a vaccine-like function. Thus, this study paves the way for high-performance tumor ablation by the synergism of photothermal/starvation/immunotherapy.Hybridization of low-dimensional components with diverse geometrical dimensions should offer an opportunity for the discovery of synergistic nanocomposite structures. In this regard, how to establish a reliable interfacial interaction is the key requirement for the successful integration of geometrically different components. Here, we present 1D/2D heterodimensional hybrids via dopant induced hybridization of 2D Ti3C2Tx MXene with 1D nitrogen-doped graphene nanoribbon. Edge abundant nanoribbon structures allow a high level nitrogen doping (∼6.8 at%), desirable for the strong coordination interaction with Ti3C2Tx MXene surface. For piezoresistive pressure sensor application, strong adhesion between the conductive layers and at the conductive layer/elastomer interface significantly diminishes the sensing hysteresis down to 1.33% and enhances the sensing stability up to 10 000 cycles at high pressure (100 kPa). Moreover, large-area pressure sensor array reveals a high potential for smart seat cushion-based posture monitoring application with high accuracy (>95%) by exploiting machine learning algorithm.Intrinsic two-dimensional (2D) magnetic materials with room-temperature ferromagnetism and air stability are highly desirable for spintronic applications. However, the experimental observations of such 2D or ultrathin ferromagnetic materials are rarely reported owing to the scarcity of these materials in nature and for the intricacy in their synthesis. Here, we report a successful controllable growth of ultrathin γ-Fe2O3 nanoflakes with a variety of morphologies tunable by the growth temperature alone using a facile chemical vapor deposition method and demonstrate that all ultrathin nanoflakes still show intrinsic room-temperature ferromagnetism and a semiconducting nature. The γ-Fe2O3 nanoflakes epitaxially grown on α-Al2O3 substrates take a triangular shape at low temperature and develop gradually in lateral size, forming eventually a large-scale γ-Fe2O3 thin film as the growth time increases due to a thermodynamic control process. The morphology of the nanoflakes could be tuned from triangular to stellated, petaloid, and dendritic crystalloids in sequence with the rise of precursor temperature, revealing a growth process from thermodynamically to kinetically dominated control. Moreover, the petaloid and dendritic nanoflakes exhibit enhanced coercivity compared with the triangular and stellated nanoflakes, and all the nanoflakes with diverse shapes possess differing electrical conductivity. The findings of such ultrathin, air-stable, and room-temperature ferromagnetic γ-Fe2O3 nanoflakes with tunable shape and multifunctionality may offer guidance in synthesizing other non-layered magnetic materials for next-generation electronic and spintronic devices.Recent studies have highlighted how reactive sulfur species (RSS) can be regulated and transported by metal-sulfur coordination compounds. We report herein the reactivity of PhB(tBuIm)3NiCl (1) with RSS, including the hydrosulfide anion ([Bu4N][SH]) and a reduced tetrasulfide ([K18-C-6]2[S4]). The strongly donating tris(carbene) ligand in 1 is geometrically constrained to a tetrahedral geometry, and the energetically preferable square planar geometry is not achievable with the [PhB(tBuIm)3]- ligand. Upon reaction of 1 with [Bu4N][SH] and [K18-C-6]2[S4], the square planar complexes PhB(tBuIm)2(tBuImH)Ni(SH)2 (2) and PhB(tBuIm)2(tBuImH)Ni(η2-S2) (3) are formed, respectively, via the protonation of one carbene ligand donor atom. Mechanistic investigation suggest that protonation occurs either from decomposition of 1 during the reaction progress, reactions with advantageous [Bu4N]+/[K18-C-6]+ countercations or from the generation of transient unidentified RSS that facilitate proton transfer reactions.Simulating the irreversible quantum dynamics of exciton- and electron-transfer problems poses a nontrivial challenge. Because the irreversibility of the system dynamics is a result of quantum thermal activation and dissipation caused by the surrounding environment, it is necessary to include infinite environmental degrees of freedom in the simulation. Because the capabilities of full quantum dynamics simulations that include the surrounding molecular degrees of freedom are limited, employing a system-bath model is a practical approach. In such a model, the dynamics of excitons or electrons are described by a system Hamiltonian, while the other degrees of freedom that arise from the environmental molecules are described by a harmonic oscillator bath (HOB) and system-bath interaction parameters. By extending on a previous study of molecular liquids [ J. Chem. Theory Comput. 2020, 16, 2099], here, we construct a system-bath model for exciton- and electron-transfer problems by means of a machine learning approach. We determine both the system and system-bath interaction parameters, including the spectral distribution of the bath, using the electronic excitation energies obtained from a quantum mechanics/molecular mechanics (QM/MM) simulation that is conducted as a function of time. Using the analytical expressions of optical response functions, we calculate linear and two-dimensional electronic spectra (2DES) for indocarbocyanine dimers in methanol. From these results, we demonstrate the capability of our approach to elucidate the nonequilibrium exciton dynamics of a quantum system in a nonintuitive manner.Aminofutalosine synthase (MqnE) is a radical SAM enzyme that catalyzes the conversion of 3-((1-carboxyvinyl)oxy)benzoic acid to aminofutalosine during the futalosine-dependent menaquinone biosynthesis. In this Communication, we report the trapping of a radical intermediate in the MqnE-catalyzed reaction using sodium dithionite, molecular oxygen, or 5,5-dimethyl-1-pyrroline-N-oxide. These radical trapping strategies are potentially of general utility in the study of other radical SAM enzymes.Normal flat panel X-ray detectors are confined in imaging of curved surfaces and three-dimensional objects. Except that, their rigid panels provide uncomfortable user experience in medical diagnosis. Here, we report a flexible X-ray detector fabricated by the combination of a lead-free Cs2TeI6 perovskite film and a polyimide (PI) substrate. High-quality Cs2TeI6 polycrystalline films are prepared by a low-temperature electrospraying method. The resistivity even remained at the level of 1011 Ω·cm after 100 cycles of bending tests with a low bending radius of 10 mm. The resulting flexible Cs2TeI6 detectors exhibit better response stability than those based on rigid SnO2F glass (FTO), which is attributed to the superior crystallization of films and the growth stress relief of flexible substrates. Furthermore, an X-ray sensitivity of 76.27 μC·Gyair-1·cm-2 and a detection limit of 0.17 μGyair·s-1 are achieved. A series of distortion-free clear X-ray images are obtained for objects with different materials and densities. These findings provide insights into flexible X-ray detectors based on perovskite films and motivate research in wearable X-ray detectors for medical radiography and dose monitoring.The volumetric bar-chart microfluidic chips (V-Chips) driven by chemical reaction-generated gas provide a promising platform for point-of-care (POC) visual biomarker quantitation. However, multiple limitations are encountered in conventional V-Chips, such as costly and complex chip fabrication, complicated chip assembly, and imprecise controllability of gas production. Herein, we introduced nanomaterial-mediated photothermal effects to V-Chips, and for the first time developed a new type of V-Chip, photothermal bar-chart microfluidic chip (PT-Chip), for visual quantitative detection of biochemicals without any bulky and costly analytical instruments. Immunosensing signals were converted to visual readout signals via photothermal effects, the on-chip bar-chart movements, enabling quantitative biomarker detection on a low-cost polymer hybrid PT-Chip with on-chip scale rulers. Four different human serum samples containing a prostate-specific antigen (PSA) as a model analyte were detected simultaneously using the PT-Chip, with a limit of detection of 2.1 ng/mL, meeting clinical diagnostic requirements. Although no conventional signal detectors were used, it achieved comparable detection sensitivity to absorbance measurements with a microplate reader. The PT-Chip was further validated by testing human whole blood without the color interference problem, demonstrating the good analytical performance of our method even in complex matrices and thus the potential to fill the gap in current clinical diagnostics that is incapable of testing whole blood. This new PT-Chip driven by nanomaterial-mediated photothermal effects opens a new horizon of microfluidic platforms for instrument-free diagnostics at the point-of-care.Effective monoclonal antibody (mAb) therapies require a threshold mAb concentration in patient serum. Moreover, the serum concentration of the mAb Bevacizumab should reside in a specific range to avoid side effects. Methods for conveniently determining the levels of mAbs in patient sera could allow for personalized dosage schedules that lead to more successful treatments. This work utilizes microporous nylon membranes functionalized with antibody-binding peptides to capture Bevacizumab, Rituximab, or Panitumumab from diluted (25%) serum. Modification of the capture-peptide terminus is often crucial to creating the affinity necessary for effective binding. The high purity of eluted mAbs allows for their quantitation using native fluorescence, and membranes are effective in spin devices that can be used in any laboratory. The technique is effective over the therapeutic range of Bevacizumab concentrations. Future work aims at further modifications to develop rapid point-of-care devices and decrease detection limits.Na3V2(PO4)2F3 has been considered as a promising cathode material for sodium-ion batteries due to its high operating voltage and structural stability. However, the issues about poor cycling performance and lack of understanding for the capacity degradation mechanism are the major hurdle for practical application. Herein, we meticulously analyzed the evolution of the morphology, crystal structure, and bonding states of the cathode material during the cycling process. We observed that capacity degradation is closely related to the shedding of the active material from the collector caused by HF corrosion. Meanwhile, HF is produced through F anion dissolution from Na3V2(PO4)2F3 induced by trace H2O during the cycling process. The F- dissolution-induced degradation mechanism based on fluorine-containing cathode materials is proposed for the first time, providing a new insight for the understanding, modification, and performance improvement for fluorophosphate-based cathode materials.Abnormal aggregation and deposition of Aβ is one of the causative agents for Alzheimer's disease. The development of inhibitors for Aβ aggregation has been considered a possible method to prevent and treat Alzheimer's disease. Edible sea cucumbers contain many bioactive molecules, including saponins, phospholipids, peptides, and polysaccharides. Herein, we report that polysaccharides extracted from sea cucumber Cucumaria frondosa could reduce the aggregation and cytotoxicity of Aβ40. By utilizing multiple biochemical and biophysical instruments, we found that the polysaccharides could inhibit the aggregation of Aβ40. A chemical kinetics analysis further suggested that the major inhibitory effects of the polysaccharides were achieved by disassembling mature fibrils, which in turn reduced the cytotoxicity of Aβ. These results suggested that the polysaccharides extracted from sea cucumber could be used as an effective inhibitor for Aβ.High-Curie-temperature (Tc) ferroelectrics have exhibited broad applications in optoelectronic devices. Recently, two-dimensional multilayered perovskite ferroelectrics with excellent photoelectric attributes are attracting increasing interest as new systems of photoferroelectrics. However, the effective tuning of the Tc value of a multilayered perovskite photoferroelectric system still remains a huge challenge. Here, by a halogen substitution strategy to introduce bromine atoms on n-propylamine cations, the hybrid perovskite photoferroelectric (3-bromopropylaminium)2(formamidinium)Pb2Br7 (BFPB) with a high Tc value (348.5 K) was obtained. It is notable that BFPB adopts a two-dimensional bilayered inorganic framework, with tight linking to the organic cation by C-Br···Br-Pb halogen···halogen interactions and N-H···Br hydrogen bonds. Intriguingly, in comparison with the prototypical compound (n-propylaminium)2(formamidinium)Pb2Br7, a remarkable augmentation of 85.2 K in the resulting Tc value of BFPB is clearly observed, which further broadens the temperature range of its application. In combination with the remarkable ferroelectric and semiconducting attributes, the reversible bulk photovoltaic effect was realized in single crystals of BFPB. This finding can not only enhance the hybrid perovskite ferroelectric family but also further promote the photoelectric application of ferroelectrics.With the failure of various amyloid-β-targeted drugs for Alzheimer's disease (AD) in clinical trials, tau protein has gained growing attention as an alternative therapeutic target in recent years. The aggregation of tau exerts neurotoxicity, and its spreading in the brain is associated with increasing severity of clinical symptoms for AD patients; thus tau-targeting therapies hold great potential against AD. Here, a tau-targeted multifunctional nanoinhibitor based on self-assembled polymeric micelles decorated with tau-binding peptide is devised for AD treatment. Through the multivalent binding effect with the aggregating protein, this nanoinhibitor is capable of efficiently inhibiting tau protein aggregation, recognizing tau aggregates, and blocking their seeding in neural cells, thus remarkably mitigating tau-mediated cytotoxicity. Moreover, the formed nanoinhibitor-tau complex after binding is more easily degraded than mature tau aggregates, which will be conducive to enhance the therapeutic effect. We believe that this multifunctional nanoinhibitor will promote the development of new antitau strategies for AD treatment.Scalable quantum information systems would store, manipulate, and transmit quantum information locally and across a quantum network, but no single qubit technology is currently robust enough to perform all necessary tasks. Defect centers in solid-state materials have emerged as potential intermediaries between other physical manifestations of qubits, such as superconducting qubits and photonic qubits, to leverage their complementary advantages. It remains an open question, however, how to design and to control quantum interfaces to defect centers. Such interfaces would enable quantum information to be moved seamlessly between different physical systems. Understanding and constructing the required interfaces would, therefore, unlock the next big steps in quantum computing, sensing, and communications. In this Perspective, we highlight promising coupling mechanisms, including dipole-, phonon-, and magnon-mediated interactions, and discuss how contributions from nanotechnologists will be paramount in realizing quantum information processors in the near-term.Machine learning was applied to predict the plant uptake and transport of engineered nanoparticles (ENPs). A back propagation neural network (BPNN) was used to predict the root concentration factor (RCF) and translocation factor (TF) of ENPs from their essential physicochemical properties (e.g., composition and size) and key external factors (e.g., exposure time and plant species). The relative importance of input variables was determined by sensitivity analysis, and gene-expression programming (GEP) was used to generate predictive equations. The BPNN model satisfactorily predicted the RCF and TF in both hydroponic and soil systems, with an R2 higher than 0.8 for all simulations. Inclusion of the initial ENP concentration as an input variable further improved the accuracy of the BPNN for soil systems. Sensitivity analysis indicated that the composition of ENPs (e.g., metals vs metal oxides) is a major factor affecting RCF and TF values in a hydroponic system. However, the soil organic matter and clay contents are more dominant in a soil system. The GEP model (R2 = 0.8088 and 0.8959 for RCF and TF values) generated more accurate predictive equations than the conventional regression model (R2 = 0.5549 and 0.6664 for RCF and TF values) in a hydroponic system, which could guide the sustainable design of ENPs for agricultural applications.In a typical biosensor, a biomolecule such as an aptamer is used for target recognition, and a nanomaterial is used for signal generation. Herein, we communicate a reverse system using a nanomaterial for target recognition and a DNA for signaling. We discovered that a classic metal-organic framework material, zeolitic imidazolate framework (ZIF)-67, has ultrahigh selectivity for recognizing adenosine triphosphate (ATP), allowing a fluorescently labeled DNA oligonucleotide to be used for signal generation. This sensor showed up to a 24-fold increase in fluorescence upon adding 1 mM ATP, while the fluorescence increase after adding adenosine or guanosine triphosphate was less than twofold. Its selectivity is much better than that of the ATP aptamer, which binds adenosine even better. Using isothermal titration calorimetry, the selective binding of ATP was independently verified. This sensor has a detection limit of 29 nM ATP and it can even detect ATP in serum. By replacing Co2+ with Zn2+ to form ZIF-8 or by using CoO, the selectivity for ATP was lost. Therefore, by sophisticated material design, ultrahigh selectivity for molecular recognition can be achieved.We present the case of a 72-year-old man with a one-week history of a red rash on the palms of both hands. A 4mm punch biopsy revealed interstitial granulomatous inflammation within the dermis and a colloidal iron stain showed increased dermal acid mucin. Immunohistochemical staining for CD68 confirmed the presence of abundant histiocytes within the dermis. The clinical and pathological correlation was consistent with the diagnosis of interstitial granuloma annulare. Exclusive involvement of the palms is a rare presentation and serves as a reminder for practitioners to keep granuloma annulare in their differential diagnosis when observing palmar plaques.Sporothrix spp. cause the most common deep fungal skin infections in Brazil and this is related to infected cats. Transmission is traditionally from organic material/plants but can also be zoonotic. Culture of a skin biopsy is the golden standard for determination. Treatment with oral itraconazole approaches up to 95% efficacy in patients with cutaneous sporotrichosis.Melanocytic metastasis to gynecologic organs is rare with most metastases to the ovaries. Metastases to the uterus, or in this case report, a uterine polyp, is exceedingly rare with only 17 cases reported in the literature. Post-menopausal bleeding is the most common presentation of metastatic melanoma in the endometrium, followed by uterine bleeding or abnormal postnatal bleeding in the premenopausal population. We present an 81-year-old woman with metastatic melanoma confined to an endometrial polyp leading to the diagnosis of widespread dissemination of the patient's acral melanoma resected 6 years prior. Although rare, metastatic melanoma should be considered as a cause for abnormal bleeding, especially in the post-menopausal patient with a history of melanoma.Lichen planus pigmentosus and lichen planopilaris are two clinically and histologically distinct forms of lichen planus. Lichen planus pigmentosus presents with sudden onset hyperpigmented macules and patches, predominantly in darker skin phototypes. On the other hand, lichen planopilaris is a scarring follicular variant of lichen planus that presents with progressive, permanent patches of alopecia. It is not uncommon for different variants of lichen planus to clinically coexist with each other. However, to our knowledge, there has been no previous reporting of linear lichen planus pigmentosus of the face with histological features of lichen planopilaris. We herein present a hybrid case of these two entities.Pyoderma gangrenosum (PG) is a rare, ulcerative neutrophilic dermatosis that has been reported in association with certain medications. Recognition of medications that trigger PG may help to better understand the pathogenesis of the condition and to provide earlier diagnosis and treatment for affected patients. Herein, we report a case of new-onset PG following initiation of the checkpoint inhibitor pembrolizumab for the treatment of metastatic cutaneous squamous cell carcinoma. Our case was resistant to intralesional corticosteroid therapy, but ultimately improved with systemic corticosteroids and cessation of pembrolizumab.Palpable migratory arciform erythema (PMAE) is an uncommon T cell pseudolymphoma characterized by erythematous, annular-to-arciform papules and plaques. Although the eruption is self-limited in most cases, recurrences are routine. Diagnosis requires attention to clinical history as well as histopathologic analysis, which allow for differentiation from other T cell pseudolymphomas and gyrate erythemas. A common triggering factor has not been identified. We report a 60-year-old man who developed PMAE after IVIg infusion. Interestingly, although the individual eruptions were self-limited and resolved after several weeks, subsequent infusions predictably resulted in recurrence of PMAE, confirming the association. To our knowledge, this is the first reported case of recurrent PMAE in association with IVIg infusions.Bullous pemphigoid is an autoimmune skin disease that results in formation of pruritic blisters. Most cases are treated with a combination of systemic and topical corticosteroids as well as other immunomodulatory drugs. Dupilumab is a fully human monoclonal antibody that acts as an antagonist against IL4Ra traditionally used in the treatment of atopic dermatitis. We present an 80-year-old man with moderate to severe bullous pemphigoid successfully treated with dupilumab.We present a patient with anti-MDA5 negative, anti-Ku positive clinically amyopathic dermatomyositis (CADM). A 61-year-old woman presented with a chief complaint of a 20-year history of a pruritic rash that was active on her face, chest, hands, legs, and back. A mildly scaly, erythematous, photo-distributed eruption along with slightly violaceous, scaly papules accentuated on the wrist, metacarpophalangeal joints, proximal interphalangeal and distal interphalangeal joints. Antibody profile was significant for positive ANA and anti-dsDNA, elevated anti-TIF-1gamma (RDL)/p155, and weakly positive anti Ku. Biopsy was consistent with dermatomyositis. Melanoma differentiation-associated gene 5 antibody (anti-MDA-5) has been identified as the most commonly associated autoantibody found in CADM and is associated with poor prognosis and a biomarker for the diagnosis of rapidly progressive interstitial lung disease. To our knowledge, our patient is the first case of negative anti-MDA-5 and anti-Ku positive CADM.Subcorneal pustular dermatosis is a rare chronic relapsing bullous neutrophilic dermatosis. Because it can be associated with monoclonal gammopathy of undetermined significance and multiple myeloma, screening for these conditions is necessary. Herein, we present a case of subcorneal pustular dermatosis, with concurrent monoclonal gammopathy of undetermined significance, successfully treated with acitretin.Teledermatology has been leveraged during the COVID-19 pandemic as a means of adopting novel ways to treat patients while reducing the risk of viral transmission. Although teledermatology offers benefits related to patient convenience and improved access to care, key challenges in the areas of reimbursement, licensure, and diagnostic accuracy remain. In this commentary, we discuss these three obstacles and potential solutions.Skin cancer prevention is at the forefront of public health as morbidity increases. Limited data exists on effective interventions to reduce sunburn frequency and modifiable risk factors. This research aims to determine an association between 1) demographic characteristics and outdoor sunburn frequency, and 2) sunburn frequency and sun-related risk and protective factors in a nationally representative, cross-sectional household survey. Of 23,430 surveys sent, 4,883 respondents reported sunburn-related data. Association between sunburns and demographic, risk, and protective factors were examined. When assessing demographic factors, potential confounding was addressed using multivariable analysis. In multivariable models, younger, non-Hispanic White respondents were more likely to report sunburn. Those with higher income were more likely to report any sunburn, but less likely to sunburn frequently. Females were less likely to report frequent sunburns. Engagement in sporting events, outdoor events, and day-to-day activities during the most recent sunburn was more commonly reported by those with frequent sunburns as compared with those with infrequent sunburns. Sun-protection interventions targeting higher-risk demographics during time spent outdoors, at sporting events, and during other day-to-day activities may be beneficial. Further insight into risk and protective behaviors for those who did not burn could be useful to guide public health interventions.
The SARS-CoV-2/COVID-19 pandemic dramatically impacted the delivery of healthcare, including dermatological services. In the initial stages of the pandemic, reduced patient flow produced a dramatic drop in the volume of skin cancer screening. Consistent with COVID-19 precautions, our practice conducted visual skin examinations (VSE) utilizing semi-automated total body photography (TBP).
A cross-sectional study of patient characteristics and self-reported melanoma risk factors associated with TBP usage was conducted on all patients from May to November 2020 in a single practitioner private dermatology setting. The process and histopathology-confirmed outcomes were compared to those in the same 6-month period in 2019.
For the May-November 2020 timeframe, those who opted for the home TBP (35%) compared to clinic TBP were younger, had higher self-reported skin cancer risk, and were more likely to have had previous TBP sessions. Overall, the number of TBP sessions increased, while dermoscopy usage and biopsy number decreased. There was no change in the number and distribution of skin cancer diagnoses compared to the same period in 2019. The Melanoma-In-SituInvasive Melanoma (MISINV) ratio was above the U.S. ratio reported for 2020 of 0.951 (95,710 MIS100,350 INV).
Semi-automated TBP was successfully implemented during the pandemic without affecting skin cancer detection.
Semi-automated TBP was successfully implemented during the pandemic without affecting skin cancer detection.Non-celiac gluten sensitivity is often clinically indistinguishable from celiac disease, and patients show improvement or resolution of their symptoms with a gluten-free diet. In contrast to celiac disease, the effects of gluten on the skin and hair in the context of non-celiac gluten sensitivity are not as clear. This review aims to describe the impact of gluten on the skin and hair in patients with non-celiac gluten sensitivity and those without a definitive celiac disease diagnosis. A literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines for systematic reviews. Forty-two publications met inclusion criteria with five studies describing the skin manifestations of non-celiac gluten sensitivity. Trials identifying the impact of a gluten-free diet on skin disease, as well as dermatologic conditions and their associations with antigliadin antibodies were also identified. Dermatologic manifestations in patients with non-celiac gluten sensitivity vary and may be non-specific.