Woodruffcreech6760

Z Iurium Wiki

In this study, we investigated how Oroxylum indicum leaf and fruit extracts affect the viability and migration of MCF-7 breast cancer cells and the mechanisms of action responsible for these effects. MCF-7 cells treated with the extracts were examined using the sulforhodamine B, colony formation and caspase 3 activity assays, and by Western blotting. O. indicum extracts were found to inhibit MCF-7 cell growth in a concentration- and time-dependent manner, with 48 h IC50 values of 57.02 ± 2.85 μg/mL and 131.3 ± 19.2 μg/mL for leaf and fruit extracts, respectively. Further, the O. indicum leaf extract caused a reduction in MCF-7 cell viability, induction of MCF-7 cell apoptosis and ROS formation, and an increase in caspase 3 activity. Also, the two extracts inhibited MCF-7 cell migration and reduced both MMP 9 and ICAMP1 gene expression and MMP9 protein expression. Additionally, O. indicum extracts greatly reduced expression of the cell cycle regulatory protein Rac1 in the mevalonate pathway. In summary, O. indicum leaf and fruit extracts reduce breast cancer cell growth, cell viability and cell migration. O. indicum constituents could, therefore, be useful for augmenting the activity of chemotherapeutic drugs employed to treat breast cancer. © 2020 Xi'an Jiaotong University. Production and hosting by Elsevier B.V.Wutou-Gancao herb-pair is extensively used to attenuate the toxicity and enhance the efficacy of aconite. In this study, potential synergic mechanism of the herb pair was investigated by utilizing multiple approaches. In silico and in vitro Caco-2 cell models were applied to study the potential binding mode of bioactive ingredients existing in liquorice with P-glycoprotein (P-gp), as well as the inhibition effects on P-gp. Additionally, anti-inflammatory activity of aconitine (AC) combined with active ingredients of liquorice, as well as pharmacokinetic patterns of AC after co-administration was investigated. learn more Anti-inflammatory effect of AC (1 mg/kg) in rats was enhanced in combination with bioactive ingredients of liquorice (10 mg/kg). In the meanwhile, the exposure of AC in vivo was altered, in terms of Cmax and AUC. For instance, the Cmax and AUC were increased to 1.9 and 1.3 folds, respectively, when used in combination with liquiritigenin. The in silico study revealed the potential binding mode with outward facing conformation of P-gp. The resulting data obtained from transport of rhodamine-123 (Rh-123) across Caco-2 cell monolayer further indicated that the function of P-gp was inhibited by chemicals in liquorice. The synergic effect was therefore proposed to be attributed to inhibition of P-gp by liquorice since AC has been demonstrated to be the substrate of P-gp. The resuls revealed that potential synergic mechanism of Wutou-Gancao herb-pair by inhibiting function of key efflux transporter P-gp to enhance the exposure of AC in systematic circulation, and further the anti-inflammatory effect, which helps clarify the compatibility rationale of these two herbs. © 2019 Xi'an Jiaotong University. Production and hosting by Elsevier B.V.Active targeted drug delivery methods facilitate effective uptake of functionalized nanoparticles through receptor-mediated transcytosis. In recent years, albumin-nanoparticle interaction has been critically examined so that this functionalized nanoparticle can be efficiently loaded with drugs. The present investigation aims at understanding the adsorption of Bovine Serum Albumin (BSA) on Silver Nanoparticle (SNP) surface, preparation of soft conjugates (SC) and hard conjugates (HC) of BSA-functionalized SNP (SNP-BSA), and their interaction with curcumin (CUR). HC contains tightly bound BSA whereas SC involves tightly and loosely bound BSA. Increase in the hydrodynamic radii of conjugates was observed upon SNP incubation with increased concentration of BSA. Three different SNP-BSA conjugate ratios were selected to study their interaction with CUR. Fluorescence spectroscopy showed a strong association between CUR and SNPBSA conjugates. However, binding varied with a change in the conjugate ratio. Circular Dichroism (CD)/Fourier Transform Infrared (FTIR) spectroscopy revealed the alterations in the secondary structure of BSA upon CUR binding to the conjugates. Zeta potential data indicated stable conjugate formation. CUR in SNPBSA conjugate was found to have a higher half-life as compared to the control. We believe that this is the first biophysical characterization report of conjugates that can be effectively extrapolated for targeted drug delivery. © 2020 Xi'an Jiaotong University. Production and hosting by Elsevier B.V.The noxious effects from exposure to toxic inhalation hazards (TIHs, such as isocyanates, chlorine, etc.) are known to be triggered by the activation of transient receptor potential ankyrin 1 (TRPA1) ion channel. Antagonists of TRPA1 have shown near complete attenuation of the noxious effects from TIH exposure. One of the TRPA1 antagonists, (1E,3E)-1-(4-fluorophenyl)-2-methyl-1-pentene-3-one oxime (A-967079), has shown impressive efficacy, high selectivity, high potency, and oral bioavailability. Although a validated method to quantify A-967079 in biological matrices is vital for the further development of A-967079 as a therapeutic agent, no method for its analysis from any matrix is currently available. Hence, a rapid and simple HPLC-MS/MS method was developed and validated to quantify A-967079 in rabbit plasma. The method presented here features an excellent LOD of 25 nM and a wide linear range (0.05-200 μM), with good accuracy and precision (100 ± 10.5% and less then 14.2% relative standard deviation, respectively). The stability of A-967079 in plasma was excellent for most of the storage conditions evaluated. The method was successfully applied to determine A-967079 from treated animals and it may facilitate the development of this TRPA1 antagonist as a therapeutic agent against the noxious effects of TIH exposure. © 2019 Xi'an Jiaotong University. Production and hosting by Elsevier B.V.Synthetic cathinones are new psychoactive substances that represent a health risk worldwide. For most of the 130 reported compounds, information about toxicology and/or metabolism is not available, which hampers their detection (and subsequent medical treatment) in intoxication cases. The principles of forensic analytical chemistry and the use of powerful analytical techniques are indispensable for stablishing the most appropriate biomarkers for these substances. Human metabolic fate of synthetic cathinones can be assessed by the analysis of urine and blood obtained from authentic consumers; however, this type of samples is limited and difficult to access. In this work, the metabolic behaviour of three synthetic cathinones (4-CEC, 4-CPrC and 5-PPDi) and one amphetamine (3-FEA) has been evaluated by incubation with pooled human hepatocytes and metabolite identification has been performed by high-resolution mass spectrometry. This in vitro approach has previously shown its feasibility for obtaining excretory human metabolites.

Autoři článku: Woodruffcreech6760 (Magnussen Funch)