Wolfflentz1268
Plants containing aristolochic acid and its derivatives are nephrotoxic, mutagenic, and carcinogenic to humans; chronic diet poisoning caused by the aristolochic acid is the cause of endemic (Balkan) nephropathy and related cancers.
To develop a colloidal gold immunochromatographic test strip (ICS) based on the competitive format for the rapid detection of aristolochic acid A (AA-A) in herbal medicinal materials.
For the ICS based on gold nanoparticles (AuNPs), the antigen [AA-A-bovine serum albumin (BSA)], and goat anti-mouse IgG were drawn on the nitrocellulose membrane as the test line (T line) and the control line (C line), respectively. Monoclonal antibody (MAb)-AuNP conjugates were sprayed onto the conjugate pad. The sensitivity of the ICS was 6 ng/mL, and the test was completed in 10 min. The analysis of AA-A in traditional Chinese medicine samples showed that the ICS results were in good agreement with those obtained by high-performance liquid chromatography methods.
These results demonstrated that the ICS test could be used as a reliable, rapid, cost-effective, and convenient qualitative tool for on-site screening techniques to detect AA-A in herbal medicinal materials without any special instrumentation.
These results demonstrated that the ICS test could be used as a reliable, rapid, cost-effective, and convenient qualitative tool for on-site screening techniques to detect AA-A in herbal medicinal materials without any special instrumentation.Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.The aim of this study was to investigate the effect of nucleotide-binding oligomerization domain (NOD)-like receptor family CARD domain containing 5 (NLRC5) in cardiac hypertrophy, and to explore the mechanism implicated in this effect Cardiac hypertrophy was induced in neonatal rat cardiac myocytes using 1 μM of angiotensin II (Ang II) for 12, 24 and 48 h. Overexpression of NLRC5 was induced in H9C2 cells, and the NLRC5 + Ang II-treated cells were exposed to SC9 and 3-methyladenine (3MA). An immunofluorescence assay was used for α-actinin staining, and quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) was performed for NLRC5, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) determination. Western blot analysis was applied to measure the levels of NLRC5, microtubule-associated protein 1A/1B-light chain 3 type I (LC3I), LC3II, sequestosome 1 (p62), protein kinase B (AKT), phosphorylated Akt (pAKT), mammalian target of rapamycin (mTOR) and phosphorylated mTOR (pmTOR). The level of NLRC5 was significantly decreased after Ang II treatment in cardiomyocytes, but the levels of ANP and BNP were increased. Overexpression of NLRC5 reduced the cell size, downregulated the levels of ANP and BNP, increased LC3II / LC3I, but decreased p62 in Ang II-induced cardiomyocyte hypertrophy. In addition, the results from Western blot showed that overexpression of NLRC5 distinctly decreased the ratios of pAKT/AKT and pmTOR/mTOR in cardiomyocyte hypertrophy. SC79 and 3MA significantly downregulated the ratio of LC3I/LC3II but increased the level of p62 in NLRC5 + Ang II-treated cells. These results provide a possible novel therapeutic strategy for cardiac hypertrophy that might be useful in a clinical setting.A stimuli-responsive invisible ink for time-dependent encryption of information is reported. Consisting of a pillar[5]arene-based supramolecular network grafted with spiropyran moieties, these materials display time-dependent photochromic behavior with tailorable fading rates. Ultraviolet (UV) light results in isomerization of the colorless spiropyran to the corresponding colored merocyanine, while visible light or heat causes the reverse isomerization with a rate that is dependent on the density of host-guest crosslinks. The kinetics of discoloration are a function of merocyanine aggregation, which becomes more pronounced as the host-guest crosslink density is increased, leading to a reduced conversion rate and slower time-dependent fading. The degree of crosslinking, and hence the fading rate, may be modulated via the addition of unbound pillar[5]arene host or nitrile guest as competitors. Time-dependent information encryption is enabled by combining selective placement of host and guest competitors and UV patterning. UV patterning provides an initially "false" image that does not reveal the desired information, and it is only after a given time that the encrypted data appears. This work provides a unique approach to enhance the security of information storage associated with offline portable data encryption.Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.
Tacrolimus (TAC), a first-line immunosuppressant in solid-organ transplant, has a narrow therapeutic window and large inter-individual variability, which affects its use in clinical practice. Successful predictions using machine learning algorithms have been reported in several fields. However, a comparison of 10 machine learning model-based TAC pharmacogenetic and pharmacokinetic dosing algorithms for kidney transplant perioperative patients of Chinese descent has not been reported. The objective of this study was to screen and establish an appropriate machine learning method to predict the individualized dosages of TAC for perioperative kidney transplant patients.
The records of 2551 patients were collected from three transplant centres, 80% of which were randomly selected as a 'derivation cohort' to develop the dose prediction algorithm, while the remaining 20% constituted a 'validation cohort' to validate the final algorithm selected. Important features were screened according to our previously establch was chosen to establish the dose prediction model, performed better than the other nine machine learning models. This study is the first to establish ETR algorithms to predict TAC dosage. This study will further promote the individualized medication of TAC in kidney transplant patients in the future, which has great significance in ensuring the safety and effectiveness of drug use.
The results indicated that the ETR algorithm, which was chosen to establish the dose prediction model, performed better than the other nine machine learning models. This study is the first to establish ETR algorithms to predict TAC dosage. This study will further promote the individualized medication of TAC in kidney transplant patients in the future, which has great significance in ensuring the safety and effectiveness of drug use.PirAB is a binary toxic protein that causes acute hepatopancreatic necrosis disease (AHPND) in shrimp. Their closest homologs, PirAvc -like and PirBvc -like proteins, are encoded by two adjacent genes on a non-pVH plasmid from a Vibrio campbellii strain. Herein, PirABvc -like protein caused neither abnormalities nor death in shrimp postlarvae (Litopenaeus vannamei); furthermore, typical AHPND clinical signs were not observed. PirAvc -like protein corresponds to Cry toxin domain III (ligand-binding domain) and likely binds to N-acetylgalactosamine. The C-terminal and N-terminal of PirBvc -like resemble Cry toxin domain II (receptor-binding domain) and domain I (pore-forming domain), respectively. PirAvc -like and PirBvc -like proteins are structurally similar to PirA and PirB, respectively. Subtle structural differences between PirAvc -like protein and PirA appear to be involved in ligand-binding and binary protein complex formation. The difference in virulence of PirABvc -like and PirAB may result from the specific binding of the protein complex to distinct host receptors. These results shed light on the potential functions and host receptors of PirABvc -like proteins and their relationship with PirAB.
Evaluation of the quality properties of papaya becomes essential due to the acceleration of the fruit shelf-life senescence and the deterioration factor of the expected postharvest operations. In this study, the colour features in RGB, normalised RGB, HSV and L*a*b* channels were extracted and correlated with mechanical properties, moisture content (MC), total soluble solids (TSS) and pH for the prediction of quality properties at five ripening stages of papaya (R1-R5).
The mean values of colour features in RGB
R
m
,
G
m
,
B
m
, normalised RGB
R
nm
,
G
nm
,
B
nm
HSV
H
m
,
S
m
,
V
m
, and L*a*b*
L
m
,
a
m
,
b
m
were the best estimator for predicting TSS with R
≥ 0.