Whiteheadpetterson1948
Patients share a complex neurodevelopmental and neurological phenotype (developmental delay, movement disorder) with impaired gait, abnormal tone and hand stereotypies. However, the presence and characteristics of regression and loss of language and functional hand use can differ. Finally, the frequency of additional supportive criteria and their distribution also vary widely.
Patients share a complex neurodevelopmental and neurological phenotype (developmental delay, movement disorder) with impaired gait, abnormal tone and hand stereotypies. However, the presence and characteristics of regression and loss of language and functional hand use can differ. Finally, the frequency of additional supportive criteria and their distribution also vary widely.Human genetic disorders, such as Down syndrome, have a wide variety of clinical phenotypic presentations, and characterizing each nuanced phenotype and subtype can be difficult. In this study, we examined the electronic health records of 4095 individuals with Down syndrome at the Children's Hospital of Philadelphia to create a method to characterize the phenotypic spectrum digitally. We extracted Human Phenotype Ontology (HPO) terms from quality-filtered patient notes using a natural language processing (NLP) approach MetaMap. We catalogued the most common HPO terms related to Down syndrome patients and compared the terms with those from a baseline population. We characterized the top 100 HPO terms by their frequencies at different ages of clinical visits and highlighted selected terms that have time-dependent distributions. We also discovered phenotypic terms that have not been significantly associated with Down syndrome, such as "Proptosis", "Downslanted palpebral fissures", and "Microtia". In summary, our study demonstrated that the clinical phenotypic spectrum of individual with Mendelian diseases can be characterized through NLP-based digital phenotyping on population-scale electronic health records (EHRs).RNA modification is vital to various cellular and biological processes. Among the existing RNA modifications, N6-methyladenosine (m6A) is considered the most important modification owing to its involvement in many biological processes. The prediction of m6A sites is crucial because it can provide a better understanding of their functional mechanisms. In this regard, although experimental methods are useful, they are time consuming. Previously, researchers have attempted to predict m6A sites using computational methods to overcome the limitations of experimental methods. Some of these approaches are based on classical machine-learning techniques that rely on handcrafted features and require domain knowledge, whereas other methods are based on deep learning. However, both methods lack robustness and yield low accuracy. Hence, we develop a branch-based convolutional neural network and a novel RNA sequence representation. The proposed network automatically extracts features from each branch of the designated inputs. Subsequently, these features are concatenated in the feature space to predict the m6A sites. Finally, we conduct experiments using four different species. The proposed approach outperforms existing state-of-the-art methods, achieving accuracies of 94.91%, 94.28%, 88.46%, and 94.8% for the H. sapiens, M. musculus, S. cerevisiae, and A. thaliana datasets, respectively.microRNAs (miRNAs) are emerging as relevant molecules in cancer development and progression. MiRNAs add a post-transcriptional level of control to the regulation of gene expression. The deregulation of miRNA expression results in changing the molecular circuitry in which miRNAs are involved, leading to alterations of cell fate determination. In this review, we describe the miRNAs that are emerging as innovative molecular biomarkers from liquid biopsies, not only for diagnosis, but also for post-surgery management in cancer. We focus our attention on renal cell carcinoma, in particular highlighting the crucial role of circulating miRNAs in clear cell renal cell carcinoma (ccRCC) management. In addition, the functional deregulation of miRNA expression in ccRCC is also discussed, to underline the contribution of miRNAs to ccRCC development and progression, which may be relevant for the identification and design of innovative clinical strategies against this tumor.The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400-600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.Genomic imprinting is an epigenetic mechanism that results in monoallelic, parent-of-origin-specific expression of a small number of genes. Imprinted genes play a crucial role in mammalian development as their dysregulation result in an increased risk of human diseases. DNA methylation, which undergoes dynamic changes early in development, is one of the epigenetic marks regulating imprinted gene expression patterns during early development. Thus, environmental insults, including endocrine disrupting chemicals during critical periods of fetal development, can alter DNA methylation patterns, leading to inappropriate developmental gene expression and disease risk. Here, we summarize the current literature on the impacts of in utero exposure to endocrine disrupting chemicals on genomic imprinting and metabolism in humans and rodents. We evaluate how early-life environmental exposures are a potential risk factor for adult metabolic diseases. We also introduce our mouse model of phthalate exposure. Finally, we describe the potential of genomic imprinting to serve as an environmental sensor during early development and as a novel biomarker for postnatal health outcomes.
Variant transthyretin amyloidosis (ATTRv) is an autosomal dominant inherited disease, where the mutation of the transthyretin gene (TTR) results in the deposition of pathogenic protein fibrils in various tissues. The mutation type influences the clinical course. Until now, no data were available on the genotype, phenotype, and prevalence of Hungarian ATTRv patients. The aim of our study was to assess the prevalence, regional distribution, genotypes, and phenotypes of Hungarian patients with ATTRv.
With the collaboration of Hungarian regional and university centers, we identified patients diagnosed with ATTRv. We also searched prior publications for case studies of Hungarian ATTRv patients.
40 individuals in 23 families with ATTRv were identified within the borders of Hungary. At the time of the diagnosis, 24 of them were symptomatic. The two most common mutations were ATTRHis88Arg (nine families) and ATTRIle107Val (8 families). ATTRVal30Met was demonstrated in 2 families, and ATTRVal122del, ATTRPhe33LeuRv, both presenting with mixed phenotype, but the median age at the time of the diagnosis is 9 years lower in patients with ATTRHis88Arg than in patients with ATTRIle107Val.
As TTR genotype influences the phenotype and clinical course of ATTRv, it is important to know the regional data. In Hungary, ATTRHis88Arg and ATTRIle107Val are the most common mutations in ATTRv, both presenting with mixed phenotype, but the median age at the time of the diagnosis is 9 years lower in patients with ATTRHis88Arg than in patients with ATTRIle107Val.True erythrocytosis is present when the red cell mass is greater than 125% of predicted sex and body mass, which is reflected by elevated hemoglobin and hematocrit. Erythrocytosis can be primary or secondary and congenital or acquired. Congenital defects are often found in those diagnosed at a young age and with a family history of erythrocytosis. Primary congenital defects mainly include mutations in the Erythropoietin receptor gene but SH2B3 has also been implicated. Secondary congenital erythrocytosis can arise through a variety of genetic mechanisms, including mutations in the genes in the oxygen sensing pathway, with high oxygen affinity hemoglobin variants and mutations in other genes such as BPMG, where ultimately the production of erythropoietin is increased, resulting in erythrocytosis. Recently, mutations in PIEZ01 have been associated with erythrocytosis. In many cases, a genetic variant cannot be identified, leaving a group of patients with the label idiopathic erythrocytosis who should be the subject of future investigations. The clinical course in congenital erythrocytosis is hard to evaluate as these are rare cases. However, some of these patients may well present at a young age and with sometimes catastrophic thromboembolic events. There is little evidence to guide the management of congenital erythrocytosis but the use of venesection and low dose aspirin should be considered.Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.The bladder exstrophy-epispadias complex (BEEC) is an abdominal midline malformation comprising a spectrum of congenital genitourinary abnormalities of the abdominal wall, pelvis, urinary tract, genitalia, anus, and spine. The vast majority of BEEC cases are classified as non-syndromic and the etiology of this malformation is still unknown. This review presents the current knowledge on this multifactorial disorder, including phenotypic and anatomical characterization, epidemiology, proposed developmental mechanisms, existing animal models, and implicated genetic and environmental components.