Whalenmcleod3085
Bacterial nanocellulose (BNC) is a natural biomaterial with a wide range of medical applications. However, it cannot be used as a biological implant of the circulatory system without checking whether it is biodegradable under human plasma conditions. This work aimed to investigate the BNC biodegradation by selected pathogens under conditions simulating human plasma. The BNC was incubated in simulated biological fluids with or without Staphylococcus aureus, Candida albicans and Aspergillus fumigatus, and its physicochemical properties were studied. The results showed that the incubation of BNC in simulated body fluid with A. fumigatus contributes more to its degradation than that under other conditions tested. The rearrangement of the hydrogen-bond network in this case resulted in a more compact structure, with an increased crystallinity index, reduced thermal stability and looser cross-linking. Therefore, although BNC shows great potential as a cardiovascular implant material, before use for this purpose its biodegradability should be limited.In this study, a pesticide controlled release system with dual response characteristics of pH and enzyme triggering was developed. Indoxacarb (IDC) was loaded into hollow mesoporous silica (HMS) nanoparticles, carboxylated β-cyclodextrin (β-CD) acted as a capping molecule to couple with the amino-functionalized HMS, and their well-defined morphological structures were confirmed by scanning electron microscopy and transmission electron microscopy. The results showed that the prepared IDC loaded HMS-CD had high loading efficiency (26.42%, w/w) and showed excellent dual response properties to pH and the α-amylase enzyme. IDC loaded HMS-CD nanoparticles showed better insecticidal activity against Spodoptera frugiperda than applying the same dose of IDC emulsifiable concentrate, and the toxicity of IDC loaded HMS-CD to zebrafish was reduced by more than 5-fold, indicating that insecticide delivery systems based on β-CD-anchored HMS nanoparticles could potentially be applied for sustainable control of pests and reduce harm to non-target organisms and the environment.Bletilla striata polysaccharides (BSPs) are effective for anti-inflammatory, detumescence, and radicals scavenging, with important applications in the area of food chain, pharmacy science, and health care. In this study, we comprehensively studied the interplay between the polysaccharides' formation, physicochemical properties, rheological properties, and associated antioxidant activities of BSPs from different extraction methods. The crude polysaccharides obtained from Bletilla striata by using the hot water extraction (BSPs-H), alkali-assisted extraction (BSPs-A), boiling water extraction (BSPs-B), and ultrasonic-assisted extraction (BSPs-U) methods showed different molecular weights, monosaccharide compositions, glycosidic bond compositions, and zeta potentials, but with the same IR spectra characteristic and thermal stability. By the above-mentioned four kinds of extraction methods, the resultant BSPs exhibited various degrees of reticular and lamellar structure. All the BSPs solutions exhibited shear-thinning behavior with the increase of the shear rate. Among these BSPs, BSPs-A exhibited better DPPH and ABTS radical scavenging activities and reducing power, whereas BSPs-H showed better hydroxyl radical scavenging activities.Protein-polysaccharide complexes often exhibit amended techno-functional characteristics when compared to their individual participant biomolecules. In this study, a complex coacervation of cress seed mucilage (CSM)/β-lactoglobulin (Blg) was used for stabilizing oil-in-water emulsions; they were characterized in terms of physical properties, droplet-size distribution and microstructure. Also, a comprehensive study was carried out on interfacial rheological responses and on the corresponding emulsion stability of different complexes. Freeze-thaw stability of the produced emulsions which had from mixtures of CSM-Blg was also evaluated. More than the size of droplets, interfacial rheological characteristics were associated with the properties of the adsorbed layers and with the stability of emulsions in storage. Using the CSM-Blg-Ca ultimately resulted in emulsions that proved stable against creaming, with no sign of phase separation over 3 weeks. These results show protein-polysaccharide complexes as appropriate emulsifiers that can make emulsion-based products resistant to unwanted changes caused by freeze-thawing.In this study, 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC)-based hydrogel was devised as a mucosal adjuvant for H5N1 vaccine. Aimed to investigate the structure activity relationship between HTCC hydrogel and immune response, we prepared a series of HTCC hydrogel with defined quaternization degrees (DQs, 0%, 21%, 41%, 60%, 80%). Results suggested that with DQ increasing, the positive charge and gelation time of HTCC hydrogel increased but the viscosity decreased. We applied in vivo imaging system and found that the moderate DQ 41% prolonged antigen residence time in nasal cavity, resulting in the most potent systemic responses (IgG, IgG1, IgG2a, HI). While, the lowest DQ 0% produced the best mucosal IgA antibody responses, most likely due to the closer contact with mucosa. Furthermore, the influence of animal gender was also discussed. These data add to the growing understanding of the relationship between physicochemical features of chitosan-based hydrogel and how they influence the immune responses.Targeting cell surface receptors for specific drug delivery in cancer has garnered lot of attention. Urokinase plasminogen activator receptor (uPAR), a surface biomarker, is overexpressed on many tumours including breast, colorectal, prostate, and ovarian cancers. Binding of growth factor domain (GFD) of urokinase plasminogen activator (uPA) with uPAR lead to its close conformation, and allow somatomedin B domain (SMB) of vitronectin binding by allosteric modulation. CY-09 In-silico docking of uPAR with GFD and SMB peptides was performed to identify potential binding affinity. Herein, we report fluorescently labeled peptide functionalized AuNPs with a mixed self-assembled monolayer of intercalating chitosan polymer for efficient targeting and imaging of uPAR-positive cells. The biophysical characterization of nanoconjugates and uPAR-specific targeting was assessed by FACS, cell adhesion, and fluorescence imaging. AuNPs/chitosan/GFD+SMB peptides showed higher uptake as compared to AuNPs/chitosan/GFD, and AuNPs/chitosan/SMB that can be utilized as a tool for molecular targeting and imaging in metastasis.