Weaversuhr3278

Z Iurium Wiki

Chemical exchange saturation transfer (CEST) MRI, versatile for detecting endogenous mobile proteins and tissue pH, has proved valuable in tumor imaging. However, CEST MRI scans are often performed under non-equilibrium conditions, which confound tissue characterization. This study proposed a quasi-steady-state (QUASS) CEST MRI algorithm to standardize fast and accurate tumor imaging at 3 T. The CEST signal evolution was modeled by longitudinal relaxation rate during relaxation delay (Td) and spinlock relaxation during RF saturation time (Ts), from which the QUASS CEST effect is derived. Numerical simulation and human MR imaging experiments (7 healthy volunteers and 19 tumor patients) were conducted at 3 T to compare the CEST measurements obtained under two representative experimental conditions. In addition, amide proton transfer (APT), combined magnetization transfer (MT) and nuclear overhauser enhancement (NOE) effects, and direct water saturation were isolated using a 3-pool Lorentzian fitting in white matter and gray matter of healthy volunteers and for patients in the contralateral normal-appearing white matter and tumor regions. Finally, the student's t-test was performed between conventional and QUASS CEST measurements. The routine APT and combined MT & NOE measures significantly varied with Ts and Td (P .05), indicating the accuracy and robustness of QUASS CEST MRI for tumor imaging. To summarize, the QUASS CEST reconstruction algorithm enables fast and accurate tumor CEST imaging at 3 T, promising to expedite and standardize clinical CEST MRI.Morphologically diverse copper phthalocyanine (CuPc) thin layers were thermally characterized by scanning thermal microscopy (SThM). The organic layers with thicknesses below 1 µm were deposited by physical vapor deposition in a high vacuum on the N-BK 7 glass substrates. Four set of samples were fabricated and studied. Atomic Force Microscopy imaging revealed strong differences in the surface roughness, mean grain size/height, as well as distances between grains for the CuPc layers. For quantitative thermal investigations, three active SThM operating modes were applied using either a Wollaston thermal probe (ThP) or KNT ThP as thermal probe heated with a DC, an AC (3ω-SThM) current or their combination (DC/AC SThM). Meanwhile, qualitative analysis was performed by thermal surface imaging. The results of this study revealed a correlation between the morphology and the local thermophysical properties of the examined CuPc thin layers. It was found that the heat transport properties in such layers will deteriorate with the increase of the surface roughness and porosity. selleck Those results can be a valuable contribution to the further development of phthalocyanine-based devices.We have analyzed the possibilities of wave front shaping with miniature patterned electron mirrors through the WKB approximation. Based on this, we propose a microscopy scheme that uses two miniature electron mirrors on an auxiliary optical axis that is in parallel with the microscope axis. A design for this microscopy scheme is presented for which the two axes can be spatially separated by as little as 1 mm. We first provide a mathematical relationship between the electric potential and the accumulated phase modulation of the reflected electron wave front using the WKB approximation. Next, we derive the electric field in front of the mirror, as a function of a topographic or pixel wise excited mirror pattern. With this, we can relate the effect of a mirror pattern onto the near-field phase, or far field intensity distribution and use this to provide a first optical insight into the functioning of the patterned mirror. The equations can only be applied numerically, for which we provide a description of the relevant numerical methods. Finally, these methods are applied to find mirror patterns for controlled beam diffraction efficiency, beam mode conversion, and an arbitrary phase and amplitude distribution. The successful realization of the proposed methods would enable arbitrary shaping of the wave front without electron-matter interaction, and hence we coin the term virtual phase plate for this design. The design may also enable the experimental realization of a Mach-Zehnder interferometer for electrons, as well as interaction-free measurements of radiation sensitive specimen.Chamaecrista mimosoides is an annual herb legume widely distributed in tropical and subtropical Asia and Africa. It may have primitive and independently-evolved root nodule types but its rhizobia have not been systematically studied. Therefore, in order to learn the diversity and species affinity of its rhizobia, root nodules were sampled from C. mimosoides plants growing in seven geographical sites along the coast line of Shandong Peninsula, China. A total of 422 rhizobial isolates were obtained from nodules, and they were classified into 28 recA haplotypes. By using multilocus sequence analysis of the concatenated housekeeping genes dnaK, glnII, gyrB, recA and rpoB, the representative strains for these haplotypes were designated as eight defined and five candidate novel genospecies in the genus Bradyrhizobium. Bradyrhizobium elkanii and Bradyrhizobium ferriligni were predominant and universally distributed. The symbiotic genes nodC and nifH of the representative strains showed very similar topology in their phylogenetic trees indicating their co-evolution history. All the representative strains formed effective root nodules in nodulation tests. The correlation between genospecies and soil characteristics analyzed by CANOCO software indicated that available potassium (AK), organic carbon (OC) and available nitrogen (AN) in the soil samples were the main factors affecting the distribution of the symbionts involved in this current study. The study is the first systematic survey of Chamaecrista mimosoides-nodulating rhizobia, and it showed that Chamaecrista spp. were nodulated by bradyrhizobia in natural environments. In addition, the host spectrum of the corresponding rhizobial species was extended, and the study provided novel information on the biodiversity and biogeography of rhizobia.Thanks to development of erlotinib and other target therapy drugs the lung cancer treatment have improved a lot in recent years. However, erlotinib-resistant lung cancer remains an unsolved clinical problem which demands for new therapeutics to be developed. Herein we report the synthesis of a library of 1,4- and 1,5-triazole ferrocenyl derivatives of erlotinib together with their anticancer activity studies against erlotinib-sensitive A549 and H1395 as well as erlotinib-resistant H1650 and H1975 cells. Studies showed that extend of anticancer activity is mainly related to the length of the spacer between the triazole and the ferrocenyl entity. Among the series of investigated compounds two isomers commonly bearing C(O)CH2CH2 spacer have shown superior to erlotinib activity against erlotinib-resistant H1650 and H1975 cells whereas compound with short methylene spacer devoid of any activity. In-depth biological studies for the most active compound showed differences in its mechanism of action in compare to erlotinib. The latter is known EGFR inhibitor whereas their ferrocenyl congener exerts anticancer activity mainly as ROS-inducer which activates mitochondrial pathway of apoptosis in cancer cells. However, docking studies suggested that the most active compound can also binds to the active site of EGFR TK in a similar way as erlotinib.In this study, the concept of dynamic combinatorial chemistry (DCC) was applied to explore novel cholesterol esterase (CEase) inhibitors. In the presence of enzyme, two substrates (A1H3 and A2H3) were amplified from the dynamic combinatorial library (DCL), which was generated through reversible acylhydrazone formation reaction. In the in vitro biological evaluation, compound A1H3 exhibited not only potent (IC50 in nanomolar range) but also selective inhibition (>120 folds of selectivity for CEase over AChE). Furthermore, the binding pattern and possible binding mechanism were investigated in the kinetic experiment and molecular docking study, respectively.Six new lignans with various type of linkage between two C6-C3 fragments (1a, 1b, 2a, 2b, 3, 4), two new meroterpenoids (5, 6) and 24 known compounds (7-30) were isolated from an EtOH extract of the stems and leaves of Piper puberulum. The absolute configurations of enantiomers 1a and 1b were determined by single-crystal X-ray diffraction analysis, 2a and 2b were determined by comparing their calculated and experimental ECD spectra. Biogenetically, all the new lignans may come from the polymerization of two molecules of hydroxychavicol (30). In the anti-neuroinflammation activity assay, the IC50 values of fifteen compounds were lower than those of the positive control minocycline, and compound 1a showed good activity, but its enantiomer 1b showed no activity. Compound 1a have notable anti-neuroinflammatory activity, and can significantly decrease mRNA levels of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in a dose-dependent manner.This study explores the consequences of the uptake of novel medical technology for expertise coordination among specialists. Building on a 40-month field study, we show how the introduction of iMRI triggered a significant change in temporal, interactional and role dimensions of coordination. We trace the origin of those changes to the novel role the images started to play in surgery iMRI generated new forms of visibility of the brain (offering real-time, more precise imaging) and new forms of ambiguity for clinical action (representing the brain undergoing manipulation). In response to this dual nature of images, specialists reconfigured how they engage with each other aligning temporal rhythms of their corresponding work practices, shifting their interactions to focus more on dialog and synchronous mutual exploration of images, and delegating increased weight to radiological judgement for guiding immediate surgical action. We discuss the implications of our findings for research on expertise coordination and on the consequences of novel medical technologies for situated practice.

Governments around the world have developed a range of responses to deal with the COVID-19 pandemic, including containment and closure, health system and economic policies. Despite their ubiquity, little is known regarding how government policies interact with age and gender to predict individual-level psychological outcomes.

This study examines how three types of national-level government responses to the COVID-19 pandemic moderate the relationship between age and psychological distress as well as gender and psychological distress.

We use a multilevel model to assess how government policies moderate the relationship between age as well as gender and psychological distress. Individual-level data are based on the SHARE COVID-19 Survey (n=51,467 from 27 countries). Government policies are assessed using data from the Oxford COVID-19 Government Response Tracker.

Results show that containment and closure policies increase psychological distress more for women compared to men. Health system policies increase psychological distress more for women compared to men and more for older individuals compared to younger individuals.

Autoři článku: Weaversuhr3278 (Brantley Kock)