Vintherray5020
Resistance to DNA-damaging agents is one of the main reasons for the low survival of cervical cancer patients. Previous reports have suggested that the Cdc25A oncoprotein significantly affects the level of susceptibility to DNA-damaging agents, but the molecular mechanism remains unclear. In this study, we used Western blot and flow cytometry analyses to demonstrate that the deubiquitinating enzyme HAUSP stabilizes Cdc25A protein level. Furthermore, in a co-immunoprecipitation assay, we found that HAUSP interacts with and deubiquitinates Cdc25A both exogenously and endogenously. HAUSP extends the half-life of the Cdc25A protein by circumventing turnover. HAUSP knockout in HeLa cells using the CRISPR/Cas9 system caused a significant delay in Cdc25A-mediated cell cycle progression, cell migration, and colony formation and attenuated tumor progression in a mouse xenograft model. Furthermore, HAUSP-mediated stabilization of the Cdc25A protein produced enhanced resistance to DNA-damaging agents. Overall, our study suggests that targeting Cdc25A and HAUSP could be a promising combinatorial approach to halt progression and minimize antineoplastic resistance in cervical cancer.Epithelial-mesenchymal transition (EMT) is considered as the key mechanism involved in cancer metastasis. Several studies showed that various cell membrane calcium channels play different roles in cancer metastasis. In the present study, the potential role of ATPase plasma membrane Ca2+ transporting 4 (PMCA4) in regulating EMT in gastric cancer (GC) was investigated. GC patients who underwent radical surgery were enrolled in this study. In vitro human GC cell lines MKN45 and NCI-N87 were used, and MKN45 cells were injected in nude mice to evaluate tumor development. Our results showed that low PMCA4 expression was associated with advanced TNM stage and poor prognosis in GC patients. Knockdown of PMCA4 suppressed E-cadherin, grainyhead like 2 (GRHL2) and ovo-like 1 (OVOL1) expression, up-regulated vimentin expression, increased migration and invasion ability, and promoted the resistance to cytotoxic drug. Furthermore, GC cells displayed an elongated fibroblastoid morphology when PMCA4 was knockdown. PMCA4 overexpression resulted in an up-regulated E-cadherin expression and decreased migration and invasion ability. In vivo metastasis assay showed that PMCA4 overexpression resulted in a decreased incidence of lung metastasis. PMCA4 inhibition increased ZEB1 expression and nuclear accumulation of nuclear factor of activated T-cell isoform c1 (NFATc1). EMT induced by PMCA4 inhibition could be prevented by the knockdown of NFATc1 or ZEB1. In addition, cyclosporine A prevented EMT induced by PMCA4 inhibition by suppressing the NFATc1-ZEB1 pathway. Our data identified a novel mechanism in the regulation of EMT in GC, and provided a novel target in the treatment of EMT subtype in GC.Neutrophils exhibit rapid cell spreading and phagocytosis, both requiring a large apparent increase in the cell surface area. The wrinkled surface topography of these cells may provide the membrane reservoir for this. Here, the effects of manipulation of the neutrophil cell surface topography on phagocytosis and cell spreading were established. Chemical expansion of the plasma membrane or osmotic swelling had no effects. However, osmotic shrinking of neutrophils inhibited both cell spreading and phagocytosis. Triggering a Ca2+ signal in osmotically shrunk cells (by IP3 uncaging) evoked tubular blebs instead of full cell spreading. Phagocytosis was halted at the phagocytic cup stage by osmotic shrinking induced after the phagocytic Ca2+ signalling. Restoration of isotonicity was able to restore complete phagocytosis. These data thus provide evidence that the wrinkled neutrophil surface topography provides the membrane reservoir to increase the available cell surface area for phagocytosis and spreading by neutrophils.Small conductance calcium-activated potassium channels (SKs) are solely activated by intracellular Ca2+ and their activation leads to potassium efflux, thereby repolarizing/hyperpolarizing membrane potential. Thus, these channels play a critical role in synaptic transmission, and consequently in information transmission along the neuronal circuits expressing them. SKs are widely but not homogeneously distributed in the central nervous system (CNS). Activation of SKs requires submicromolar cytoplasmic Ca2+ concentrations, which are reached following either Ca2+ release from intracellular Ca2+ stores or influx through Ca2+ permeable membrane channels. Both Ca2+ sensitivity and synaptic levels of SKs are regulated by protein kinases and phosphatases, and degradation pathways. SKs in turn control the activity of multiple Ca2+ channels. They are therefore critically involved in coordinating diverse Ca2+ signaling pathways and controlling Ca2+ signal amplitude and duration. This review highlights recent advances in our understanding of the regulation of SK2 channels and of their roles in normal brain functions, including synaptic plasticity, learning and memory, and rhythmic activities. It will also discuss how alterations in their expression and regulation might contribute to various brain disorders such as Angelman Syndrome, Alzheimer's disease and Parkinson's disease.Estrogens modulate different physiological functions, including reproduction, inflammation, bone formation, energy expenditure, and food intake. NPD4928 In this review, we highlight the effect of estrogens on food intake regulation and the latest literature on intracellular estrogen signaling. In addition, gut satiety hormones, such as cholecystokinin, glucagon-like peptide 1 and leptin are essential to regulate ingestive behaviors in the postprandial period. These peripheral signals are sensed by vagal afferent terminals in the gut wall and transmitted to the hindbrain axis. Here we 1. review the role of the vagus-hindbrain axis in response to gut satiety signals and 2. consider the potential synergistic effects of estrogens on gut satiety signals at the level of vagal afferent neurons and nuclei located in the hindbrain. Understanding the action of estrogens in gut-brain axis provides a potential strategy to develop estrogen-based therapies for metabolic diseases and emphasizes the importance of sex difference in the treatment of obesity.