Vilstrupthygesen0622
Polyamines such as spermidine and spermine are found in nearly all cells, at concentrations ranging up to 0.5 mM. These cations are endogenous regulators of cellular K+ efflux, binding tightly in the pores of inwardly rectifying K+ (Kir) channels in a voltage-dependent manner. Although the voltage dependence of Kir channel polyamine blockade is thought to arise at least partially from the energetically coupled movements of polyamine and K+ ions through the pore, the nature of physical interactions between these molecules is unclear. Here we analyze the polyamine-blocking mechanism in the model K+ channel MthK, using a combination of electrophysiology and computation. Spermidine (SPD3+) and spermine (SPM4+) each blocked current through MthK channels in a voltage-dependent manner, and blockade by these polyamines was described by a three-state kinetic scheme over a wide range of polyamine concentrations. In the context of the scheme, both SPD3+ and SPM4+ access a blocking site with similar effective gating valences (0.84 ± 0.03 e0 for SPD3+ and 0.99 ± 0.04 e0 for SPM4+), whereas SPM4+ binds in the blocked state with an ∼20-fold higher affinity than SPD3+ (Kd = 28.1 ± 3.1 µM for SPD3+ and 1.28 ± 0.20 µM for SPM4+), consistent with a free energy difference of 1.8 kcal/mol. Molecular simulations of the MthK pore in complex with either SPD3+ or SPM4+ are consistent with the leading amine interacting with the hydroxyl groups of T59, at the selectivity filter threshold, with access to this site governed by outward movement of K+ ions. These coupled movements can account for a large fraction of the voltage dependence of blockade. In contrast, differences in binding energetics between SPD3+ and SPM4+ may arise from distinct electrostatic interactions between the polyamines and carboxylate oxygens on the side chains of E92 and E96, located in the pore-lining helix. © 2020 Suma et al.DNA has been widely investigated as a carrier for drug delivery. Here, we describe a macroscopic DNA film that has been generated enzymatically. This DNA film was subsequently coated with thrombin (TB) using an aptamer-protein interaction, to expedite hemostasis over a large area. The DNA film coated with TB (DNA patch) significantly improved plasma hemostasis by acting as a coagulative scaffold for TB, as well as carrying localized TB. This study elucidates the benefits of using enzymatic amplification-based DNA structures in the context of topical drug treatment.A three-component reaction between one molecule of phosphorus ylides (P-ylides) and two molecules of isocyanates for the rapid assembly of 2-amino-3-carboxylate-4-quinolones is described. https://www.selleckchem.com/products/amg-perk-44.html The mechanism may involve the addition of a P-ylide to an isocyanate followed by 1,3-H shift to form a carbamoyl stabilized P-ylide. The intermediate then reacts with another aryl isocyanate via Wittig/ketenimine-ketene rearrangement/6π-electrocyclization/1,3-H shift to finally afford the 4-quinolones.This is the first comprehensive study demonstrating the antiproliferative effect of vanadium complexes bearing 8-hydroxyquinoline (quinH) ligands, including the parent and -CH3 (Me), -NO2, -Cl and -I substituted ligands, on HCT116 and A2780 cancer cell lines. To determine the structure-cytotoxicity relationships seven six-coordinate oxovanadium(v) complexes [VO(OMe)(5,7-(Me)2-quin)2] (1), [VO(OMe)(5,7-Cl2-quin)2] (2), [VO(OMe)(5,7-Cl,I-quin)2] (3), [VO(OMe)(5,7-I2-quin)2] (4), [VO(OMe)(5-NO2-quin)2] (5), [VO(OMe)(5-Cl-quin)2] (6), and [VO(OMe)(quin)2] (7) were investigated. The cytotoxicity of 8-hydroxyquinoline oxovanadium(v) complexes is higher in the A2780 cell line (lower IC50) than that observed for the widely used chemotherapeutic agent, cisplatin, while displaying low cytotoxicity for normal human primary fibroblasts. Substituents introduced into the 8-hydroxyquinoline backbone reduced the antiproliferative effect of the vanadium complexes, and the complexes with the ligand substituted only in the 5 position (5 and 6) were more cytotoxic than those with substituents in the 5,7 positions of the quin backbone (1-4). Depending on the substituent type, the cytotoxicity of 1-4 followed the trend -Cl > -CH3 > -I. Incubation of A2780 cancer cells with IC50 concentrations of complexes 5, 6 and 7 promoted cellular detachment, possibly through membrane destabilization, and triggered apoptosis and necrosis. ROS production might be responsible for the cell death mechanism observed particularly in the A2780 cells exposed to complexes 5 and 6.The presence of reactive species in plasma-activated water is known to induce oxidative stresses in bacterial species, which can result in their inactivation. By integrating a microfludic chipscale nebulizer driven by surface acoustic waves (SAWs) with a low-temperature atmospheric plasma source, we demonstrate an efficient technique for in situ production and application of plasma-activated aerosols for surface disinfection. Unlike bulk conventional systems wherein the water is separately batch-treated within a container, we show in this work the first demonstration of continuous plasma-treatment of water as it is transported through a paper strip from a reservoir onto the chipscale SAW device. The significantly larger surface area to volume ratio of the water within the paper strip leads to a significant reduction in the duration of the plasma-treatment, while maintaining the concentration of the reactive species. The subsequent nebulization of the plasma-activated water by the SAW then allows the generation of plasma-activated aerosols, which can be directly sprayed onto the contaminated surface, therefore eliminating the storage of the plasma-activated water and hence circumventing the typical limitation in conventional systems wherein the concentration of the reactive species diminishes over time during storage, resulting in a reduction in the efficacy of bacterial inactivation. In particular, we show up to 96% reduction in Escherichia coli colonies through direct spraying with the plasma-activated aerosols. This novel, low-cost, portable and energy-efficient hybrid system necessitates only minimal maintenance as it only requires the supply of tap water and battery power for operation, and is thus suitable for decontamination in home environments.