Villadsenwhitley1202

Z Iurium Wiki

Lithium detection is of great significance in many applications. Lithium-sensing compounds with high selectivity are scarce and, if any, complicated to synthesize. We herein report a novel yet simple compound that can detect lithium ions in an organic solvent through changes in absorbance and fluorescence. Naphthalene functionalized with 1-aza-12-crown-4 (1) was synthesized via one step from commercially available 1-bromonaphthalene through Buchwald-Hartwig amination. In order to obtain a structure-property relationship, we also synthesized two other compounds that are structurally similar to 1, wherein the compounds 2 and 3 include an imide moiety (an electron acceptor) and do not include a 1-aza-12-crown-4 unit, respectively. Upon the addition of lithium ions, compound 1 displayed a clear isosbestic point in the absorption spectra and a new peak in the fluorescence spectra, whereas the compounds 2 and 3 indicated miniscule and no spectroscopic changes, respectively. 1H NMR titration studies and the calculated optimized geometry from density functional theory (DFT) indicated the lithium binding on the aza-crown. The calculated limit of detection (LOD) was 21 μM. The lithium detection with 1 is selective among other alkali metals (Na+, K+, and Cs+). DFT calculation indicated that the lone pair electrons in the nitrogen atom of 1 is delocalized yet available to bind lithium, whereas the nitrogen lone pair electrons of 2 showed significant intramolecular charge transfer to the imide acceptor, resulting in a high dipole moment, and thus were unavailable to bind lithium. This work elucidates the key design parameters for future lithium sensors.Hydrosilylation epoxidized eugenol (HSI-EP-EU) is successfully synthesized and used as a reactive diluent for epoxy/anhydride (marked as P) and epoxy/imidazole (marked as I) curing systems. The reactive bio-based diluent HSI-EP-EU has an excellent dilution effect on petroleum-based epoxy resin (E44). Combretastatin A4 in vivo The curing kinetics of P + HSI-EP-EU and I + HSI-EP-EU are studied by a non-isothermal DSC method. The kinetics parameters are calculated by using the Kissinger model, Crnae model, Ozawa model and β-T (temperature-heating speed) extrapolation, respectively, to determine theoretically reasonable curing conditions. In addition, the effects of HSI-EP-EU on the antibacterial properties, thermo-mechanical properties and thermal stability of P + HSI-EP-EU and I + HSI-EP-EU systems are also studied. It is found that HSI-EP-EU possessed obvious antibacterial properties and could effectively improve the mechanical properties for the I + HSI-EP-EU.Biochar reinforced advanced nanocomposites are of interest to a wide circle of researchers. Herein, we describe a novel MOF-derived reinforced cow dung biochar composite, which was prepared by a one-step hydrothermal method to form the MOF MIL-125(Ti) onto a nitrogen and sulfur co-doped bio-carbon (NSCDBC). The UV-vis diffuse reflectance spectrum of NSCDBC/MIL-125(Ti) exhibits an extension of light absorption in the visible region (360-800 nm), indicating its higher visible light capture capacity relative to pure MIL-125(Ti). The photocatalytic activity results show that all the NSCDBC/MIL-125(Ti) composite samples, namely NSCM-5, NSCM-10, NSCM-20 and NSCM-30 display good performance in the removal of tetracycline hydrochloride compared to pure MIL-125(Ti). Among them, NSCM-20 exhibits the highest catalytic activity with a removal rate of 94.62%, which is attributed to the excellent adsorption ability of NSCDBC and the ability to inhibit the complexation of photogenerated electron-hole pairs. Photoluminescence verifies that the loading of biochar successfully enhances the separation of photogenerated electron-hole pairs. Subsequently, the active species in the photocatalytic process are identified by using electron spin resonance spin-trap techniques and free radical trapping experiments. Finally, the possible reaction mechanism for the photocatalytic process is revealed. These results confirm that NSCDBC/MIL-125(Ti) is a potentially low-cost, green photocatalyst for water quality improvement.Recently, effective and rapid deep-learning methods for predicting chemical reactions have significantly aided the research and development of organic chemistry and drug discovery. Owing to the insufficiency of related chemical reaction data, computer-assisted predictions based on low-resource chemical datasets generally have low accuracy despite the exceptional ability of deep learning in retrosynthesis and synthesis. To address this issue, we introduce two types of multitask models retro-forward reaction prediction transformer (RFRPT) and multiforward reaction prediction transformer (MFRPT). These models integrate multitask learning with the transformer model to predict low-resource reactions in forward reaction prediction and retrosynthesis. Our results demonstrate that introducing multitask learning significantly improves the average top-1 accuracy, and the RFRPT (76.9%) and MFRPT (79.8%) outperform the transformer baseline model (69.9%). These results also demonstrate that a multitask framework can capture sufficient chemical knowledge and effectively mitigate the impact of the deficiency of low-resource data in processing reaction prediction tasks. Both RFRPT and MFRPT methods significantly improve the predictive performance of transformer models, which are powerful methods for eliminating the restriction of limited training data.Utilizing chemically synthesized an isotopically labeled internal standard, isodesmosine-13C3,15N1, an isotope-dilution LC-MS/MS method was established. Concentrations of desmosine and isodesmosine in plasma of acute cerebral stroke patients and healthy controls were determined. The concentration of desmosines was markedly higher in plasma from acute stroke patients compared with healthy controls. Desmosines are thus novel biomarkers for evaluating the extent of vascular injury after acute cerebral stroke.Marine diatoms contribute to oxygenic photosynthesis and carbon fixation and handle large changes under variable light intensity on a regular basis. The unique light-harvesting apparatus of diatoms are the fucoxanthin-chlorophyll a/c-binding proteins (FCPs). Here, we show the enhancement of chlorophyll a/c (Chl a/c), fucoxanthin (Fx), and diadinoxanthin (Dd) marker bands in the Raman spectra of the centric diatom T. pseudonana, which allows distinction of the pigment content in the cells grown under low- (LL) and high-light (HL) intensity at room temperature. Reversible LL-HL dependent conformations of Chl c, characteristic of two conformations of the porphyrin macrocycle, and the presence of five- and six-coordinated Chl a/c with weak axial ligands are observed in the Raman data. Under HL the energy transfer from Chl c to Chl a is reduced and that from the red-shifted Fxs is minimal. Therefore, Chl c and the blue-shifted Fxs are the only contributors to the energy transfer pathways under HL and the blue- to red-shifted Fxs energy transfer pathway characteristic of the LL is inactive. The results indicate that T. pseudonana can redirect its function from light harvesting to energy-quenching state, and reversibly to light-harvesting upon subsequent illumination to LL by reproducing the red-shifted Fxs and decrease the number of Dds. The LL to HL reversible transitions are accompanied by structural modifications of Chl a/c and the lack of the red-shifted Fxs.For the purpose of obtaining red-light phosphors with excellent luminescence thermal stability, a series of Gd4Al2O9Eu3+ (GAOEu3+) phosphors were synthesized by combining the sol-gel method with high-temperature calcination, and a detailed series of study and analysis of their room temperature and high temperature luminescence properties was carried out. In GAO, the emission peaks corresponding to the 5D0 → 7F j (j = 0, 1, 2, 3 and 4) transitions of Eu3+ were observed at 578, 590, 610, 654, and 707 nm, with the strongest emission peak at 610 nm, and the obtained samples were red-light phosphors. The sample GAOEu3+ synthesized by combining the sol-gel method with high-temperature calcination has a negative thermal quenching (NTQ) effect, and the best doped sample GAO0.16Eu3+ has an optimal luminescence temperature of 120 °C, and the corresponding integrated PL intensity is 183.2% of the initial value at 30 °C. The presence of the NTQ effect makes GAO0.16Eu3+ have good luminescence thermal stability, which manifests as thermal-optical energy conversion at the macroscopic level. A detailed study of the thermal quenching mechanism was carried out.Electrochemical energy-storage (EES) devices are a major part of energy-storage systems for industrial and domestic applications. Herein, a two-dimensional (2D) transition metal carbide MXene, namely Mo2TiC2, was intercalated with Sn ions to study the structural, morphological, optical, and electrochemical energy-storage effects. The Sn2+-intercalated modified layered structure, prepared via a facile liquid-phase pre-intercalated cetyltrimethylammonium bromide (CTAB) method, showed a higher surface area of 30 m2 g-1, low band gap of 1.3 eV, and large interlayer spacing of 1.47 nm, as compared to the pristine Mo2TiC2. The Sn@Mo2TiC2 electrode showed a high specific capacitance of 670 F g-1, representing a large diffusion control value compared to pure Mo2TiC2 (212 F g-1) at a scan rate of 2 mV s-1. The modified electrode also presented long-term cyclic performance, high-capacity retention and coulombic efficiency measured over 10 000 cycles. The Sn@Mo2TiC2 electrode showed much improved electrocatalytic efficiency, which may open up ways to employ double-transition 2D MXenes in energy-storage devices.This study demonstrated simple redox control in glasses by improving the method used to added glass raw materials. Specifically, the effect of carbon on the co-presence of metallic tungsten (W) particles as nucleation agents and Eu2+ ions in CaO-Al2O3-SiO2 (CAS) glass was investigated via their crystallization to form CAS glass-ceramics (GCs). In this study, the glass specimens were prepared by mixing glass cullet containing metallic W particles and Eu2+ ions, respectively, with a glass batch containing carbon. Whereas the glass specimen was yellowish because of the presence of Eu2+ when carbon was not added during the remelting process, the glass specimen prepared with carbon was black because of the presence of metallic W particles. In addition, this specimen displayed the 470 nm emission band in its fluorescence spectrum recorded under 393 nm excitation, which was attributed to the presence of Eu2+. According to the fluorescence and transmission spectra, the glass specimen showed a darker coloration and moachieved by the addition of carbon during the remelting process of mixed cullet containing W and Eu2+ through crystallization of the CAS glass. The results thus demonstrate the importance of improving the method used to added glass raw materials.Metal organic frameworks (MOFs) are attracting significant attention for applications including adsorption, chemical sensing, gas separation, photocatalysis, electrocatalysis and catalysis. In particular, zeolitic imidazolate framework 8 (ZIF-8), which is composed of zinc ions and imidazolate ligands, have been applied in different areas of catalysis due to its outstanding structural and textural properties. It possesses a highly porous structure and chemical and thermal stability under varying reaction conditions. When used alone in the reaction medium, the ZIF-8 particles tend to agglomerate, which inhibits their removal efficiency and selectivity. This results in their mediocre reusability and separation from aqueous conditions. Thus, to overcome these drawbacks, several well-designed ZIF-8 structures have emerged by forming composites and heterostructures and doping. This review focuses on the recent advances on the use of ZIF-8 structures (doping, composites, heterostructures, etc.) in the removal and photodegradation of persistent organic pollutants.

Autoři článku: Villadsenwhitley1202 (Ferguson Pontoppidan)