Vaughanhvid9106

Z Iurium Wiki

cheesmaniae that accumulate monoterpenes.A new multiple-pistil wheat mutant germplasm with more than one pistil in a floret was obtained from natural mutagenesis. This mutant can develop 2-3 grains in a glume after pollination and has a significant grain number advantage compared with normal wheat. However, the basis of the formation of multiple-pistil wheat has thus far not been well established. In this study, we first performed a continuous phenotypic observation of the floral meristem (FM) in multiple-pistil wheat. The results indicated that the secondary pistils are derived from extra stem cells that fail to terminate normally between the carpel primordium and the lodicule primordium. To further probe the potential molecular basis for the formation of secondary pistils, comparative proteomic analyses were conducted. A total of 334 differentially abundant proteins (DAPs) were identified using isobaric tags for relative and absolute quantification (iTRAQ), among which 131 proteins were highly abundant and 203 proteins were less abundant in the young spikes of multiple-pistil wheat. The DAPs, located primarily in the cell, were involved in the translation and the metabolisms of carbohydrate, nucleotide, and amino acid. Differential expression analysis showed that TaHUA2, TaRF2a, TaCHR12 and TaHEN2 may play vital roles in the regulation of wheat flower organ number. In general, the DAPs support the phenotypic analysis results at the molecular level. In combination, these results reveal new insights into the formation of multiple-pistil wheat and provide possible targets for further research on the regulation of floral organ number in wheat.Postharvest storage conditions affect the ascorbic acid (AsA) levels in fresh-cut leaves of horticultural crops. However, the detailed mechanism of AsA metabolism in the fresh-cut leaves of tea plant (Camellia sinensis) during postharvest storage under light/dark conditions remains unclear. To investigate the AsA mechanism, we treated fresh-cut tea leaves with light/dark during postharvest storage. An ascorbate peroxidase 1 (CsAPX1) protein involved in AsA metabolism was identified by iTRAQ analysis. Gene expression profile of CsAPX1 encoding ascorbate peroxidase (APX) was regulated by light/dark conditions. AsA accumulation and APX activity were suppressed by light/dark conditions. SDS-PAGE analysis showed that the molecular mass of recombinant CsAPX1 protein was about 34.45 kDa. Subcellular localization indicated that CsAPX1 protein was a cytosol ascorbate peroxidase. Overexpression CsAPX1 in Arabidopsis indicated that the decrease of AsA content and APX activity in transgenic lines were less significant than that of WT during postharvest storage under light/dark conditions. These data suggested that CsAPX1 involved in regulating AsA metabolism through effecting on the changes of AsA accumulation and APX activity in fresh-cut tea leaves during postharvest storage under light/dark conditions.The severity and frequency of many abiotic stresses such as drought, salinity and heat, cause substantial crop losses worldwide, which poses a serious challenge in food security. To increase crop production, new approaches are needed. Previous research has shown that overexpression of the tonoplast H+ pyrophosphatase gene AVP1 leads to improved drought and salt tolerance in transgenic plants. Other research showed that overexpression of thermotolerant ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase gene could maintain photosynthesis at higher temperatures, which contributes to higher heat tolerance in transgenic plants. In nature, abiotic stresses rarely come alone, instead these stresses often occur in various combinations. Therefore, it is desirable to make crops more tolerant to multiple stresses, which will likely lead to higher crop yield under various stress conditions. It is shown here that co-overexpression of the Arabidopsis gene AVP1 and the Larrea Rubisco activase gene RCA significantly increases drought, salinity and heat tolerance, resulting in higher biomass and seed yield than wild-type plants. AVP1/RCA co-overexpressing plants are as more drought- and salt-tolerant as AVP1-overexpressing plants, and as more heat-tolerant as RCA-overexpressing plants. More importantly, they produce higher seed yields than AVP1-overexpressing, RCA-overexpressing, and wild-type plants under combined drought and heat conditions.NAC protein is a large plant specific transcription factor family, which plays important roles in the response to abiotic stresses. However, the regulation mechanism of most NAC proteins in drought stress remains to be further uncovered. In this study, we elucidated the molecular functions of a NAC protein, GhirNAC2, in response to drought stress in cotton. GhirNAC2 was greatly induced by drought and phytohormone abscisic acid (ABA). Subcellular localization demonstrated that GhirNAC2 was located in the nucleus. Co-suppression of GhirNAC2 in cotton led to larger stomata aperture, elevated water loss and finally reduced transgenic plants tolerance to drought stress. Furthermore, the endogenous ABA content was significantly lower in GhirNAC2-suppressed transgenic plant leaves compared to wild type. in vivo and in vitro studies showed that GhirNAC2 directly binds to the promoter of GhNCED3a/3c, key genes in ABA biosynthesis, which were both down-regulated in GhirNAC2-suppressed transgenic lines. Transient silencing of GhNCED3a/3c also significantly reduced the resistance to drought stress in cotton plants. Aurora Kinase inhibitor However, ectopic expression of GhirNAC2 in tobacco significantly enhanced seed germination, root growth and plant survival under drought stress. Taken together, GhirNAC2 plays a positive role in cotton drought tolerance, which functions by modulating ABA biosynthesis and stomata closure via regulating GhNCED3a/3c expression.Appearance quality is an important determinant of rice quality. Many genes that affect grain appearance quality have been identified, but the regulatory mechanisms that contribute to this trait remain unclear. Here, two grains with chalkiness (gwc1) mutants, gwc1-1 and gwc1-2, were identified from an EMS-mutagenized population of indica rice cultivar Shuhui498 (R498). The gwc1 mutants had poor grain appearance quality consistent with the measured values for the percentage of grains with chalkiness, square of chalky endosperm, the total starch, amylose and sucrose contents. Milling quality and grain size were also affected in the gwc1 mutants. The gwc1-1 and gwc1-2 were found to be loss-of-function allelic mutants. GWC1 was mapped to the long arm of rice chromosome 8 using the MutMap strategy and incorrectly annotated in the reference genome for Nipponbare (MSU). The GWC1 gene corresponds to the WTG1/OsOTUB1 gene, which encodes an otubain-like protease with deubiquitinating activity that is homologous to human OTUB1.

Autoři článku: Vaughanhvid9106 (MacLeod Gustafsson)