Tierneylee0805
Sex and gender matter in all aspects of life. Humans exhibit sexual dimorphism in anatomy, physiology, but also pathology. Many of the differences are due to sex chromosomes and, thus, genetics, other due to endocrine factors such as sex hormones, some are of social origin. Over the past decades, huge number of scientific studies have revealed striking sex differences of the human brain with remarkable behavioral and cognitive consequences. Prenatal and postnatal testosterone influence brain structures and functions, respectively. Cognitive sex differences include especially certain spatial and language tasks, but they also affect many other aspects of the neurotypical brain. Sex differences of the brain are also relevant for the pathogenesis of neuropsychiatric disorders such as autism spectrum disorders, which are much more prevalent in the male population. Structural dimorphism in the human brain was well-described, but recent controversies now question its importance. On the other hand, solid evidence exists regarding gender differences in several brain functions. This review tries to summarize the current understanding of the complexity of the effects of testosterone on brain with special focus on their role in the known sex differences in healthy individuals and people in the autism spectrum.Neonatal hypoxic-ischemic encephalopathy is a disorder with heterogeneous manifestation due to asphyxia during perinatal period. It affects approximately 3-12 children per 1000 live births and cause death of 1 million neonates worldwide per year. Besides, motor disabilities, seizures, impaired muscle tone and epilepsy are few of the consequences of hypoxic-ischemic encephalopathy. Despite an extensive research effort regarding various treatment strategies, therapeutic hypothermia with intensive care unit supportive treatment remains the only approved method for neonates who have suffered from moderate to severe hypoxic-ischemic encephalopathy. However, these protocols are only partially effective given that many infants still suffer from severe brain damage. Thus, further research to systematically test promising neuroprotective treatments in combination with hypothermia is essential. In this review, we discussed the pathophysiology of hypoxic-ischemic encephalopathy and delved into different promising treatment modalities, such as melatonin and erythropoietin. However, preclinical studies and clinical trials are still needed to further elucidate the mechanisms of action of these modalities.The main role of research in medicine is to provide relevant knowledge which, after successful translation to clinical practice, improves the quality of healthcare. The sex bias which is still present in the majority of research disciplines prefers male subjects despite legislation changes in the US grant agencies and European research programme Horizon 2020. Male subjects (cells, animals) still dominate in preclinical research and it has detrimental consequences for women's health and the quality of science. Opposite bias exists for data obtained mainly in animal models utilizing female subjects (e.g. research in multiple sclerosis, osteoporosis) with skewed outcomes for men affected by these diseases. Either way, scientists are producing results which compromise half of the population. Assumptions that females as cohorts are more variable and another assumption that the oestrous cycle should be tracked in case the females are enrolled in preclinical studies were proven wrong. Variability of male versus female cohorts are comparable and do not only stem from hormonal levels. The widespread prevalence of sex differences in human diseases ultimately requires detailed experiments performed on both sexes, unless the studies are specifically addressing reproduction or sex-related behaviors.Acute lung injury is characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen, decreased lung compliance, and diffuse alveolar infiltrates on chest X-ray. The 1994 American-European Consensus Conference defined "acute respiratory distress syndrome, ARDS" by acute onset after a known trigger, severe hypoxemia defined by PaO2/FiO2 less then /=200 mm Hg, bilateral infiltrates on chest X-ray, and absence of cardiogenic edema. Milder form of the syndrome with PaO2/FiO2 between 200-300 mm Hg was named "acute lung injury, ALI". Berlin Classification in 2012 defined three categories of ARDS according to hypoxemia (mild, moderate, and severe), and the term "acute lung injury" was assigned for general description or for animal models. BMS202 ALI/ARDS can originate from direct lung triggers such as pneumonia or aspiration, or from extrapulmonary reasons such as sepsis or trauma. Despite growing understanding the ARDS pathophysiology, efficacy of standard treatments, such as lung protective ventilation, prone positioning, and neuromuscular blockers, is often limited. However, there is an increasing evidence that direct and indirect forms of ARDS may differ not only in the manifestations of alterations, but also in the response to treatment. Thus, individualized treatment according to ARDS subtypes may enhance the efficacy of given treatment and improve the survival of patients.All-inorganic lead halide perovskites have attracted tremendous interest for their excellent stability when compared with hybrid perovskites. Here we report a large-area growth of monocrystalline all-inorganic perovskite thin films and further patterning them into heterostructure arrays. We show that highly oriented CsPbBr3 microcrystal domains can be readily grown on muscovite mica substrates with a well-defined epitaxial relationship, which can further expand and eventually merge into large-area monocrystalline CsPbBr3 thin films with an excellent optical quality. Taking a step further, we show the large-area CsPbBr3 thin film can be further patterned and selectively transformed into CsPbI3 using a selective anion-exchange process to produce CsPbBr3-CsPbI3 lateral heterostructure arrays with spatially modulated photoluminescence emission and an apparent current rectification behavior. The capability to grow large-area CsPbBr3 monocrystalline thin films and heterostructure arrays defines a robust material platform for both the fundamental investigations and potential applications in optoelectronics.