Thyssendeleon7868
In contrast, in the late diverging Zygnema, the callose content did not change upon desiccation for up to 3.5 h and was primarily localized in the corners between individual cells and at terminal cells. While these callose deposits still imply reduction of mechanical damage, the photosynthetic yield did not recover fully in the investigated young cultures of Zygnema upon rehydration. The abundance and specific localization of callose correlates with the higher desiccation tolerance in Klebsormidium when compared with Zygnema.Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees.The auxin response factor (ARF) genes encode a large family of proteins involved in auxin signaling transduction. SlARF3, a member of the ARF gene family, encodes a protein containing two conserved domains, B3 and ARF, and lacking an Aux/IAA domain. Expression analysis showed that SlARF3 has a particularly high expression level in trichomes. In situ hybridization also detected the SlARF3 transcripts in epidermal pavement cells of leaves. The physiological function of SlARF3 was studied by using the RNA interference (RNAi) strategy. SlARF3-down-regulated plants exhibited decreased density of epidermal pavement cells and obviously reduced density of type I, V and VI trichomes of leaves, which indicates the important role of SlARF3 in the formation of trichomes and epidermal cells in tomato. The number of shoot xylem cells was also decreased in SlARF3-down-regulated lines. Furthermore, RNA-sequencing (RNA-Seq) analysis identified 51 differentially expressed genes (DEGs) belonging to 14 transcription factor (TF) families, such as MYB, bHLH, WD40 and C2H2 zinc finger. Twenty-seven DEGs were involved in the metabolism and signaling transduction of phytohormones, such as auxin, ethylene and gibberellin. These results indicated the important roles of the TFs and hormones in auxin-dependent transcriptional regulation of trichome formation in tomato. Taken together, our results demonstrate that SlARF3 plays an important role in the formation of epidermal cells and trichomes and reveal novel and specific functions for ARFs in tomato developmental processes.Translational control is a key regulatory step in the expression of genes as proteins. In plant cells, the translational efficiency of mRNAs differs for different mRNA species, and the efficiency dynamically changes in various conditions. To gain a global view of translational control throughout growth and development, we performed genome-wide analysis of polysome association of mRNA during growth and leaf development in Arabidopsis thaliana by subjecting the mRNAs in polysomes to DNA microarray. This analysis revealed that the degree of polysome association of mRNA was different depending on the mRNA species, and the polysome association changed greatly throughout growth and development for each. In the growth stage, transcripts showed varying changes in polysome association from strongly depressed to unchanged, with the majority of transcripts showing dissociation from ribosomes. On the other hand, during leaf development, the polysome association of transcripts showed a normal distribution from repressed to activated mRNAs when comparing expanding and expanded leaves. In addition, functional category analysis of the microarray data suggested that translational control has a physiological significance in the plant growth and development process, especially in the categories of signaling and protein synthesis. In addition to this, we compared changes in polysome association of mRNAs between various conditions and characterized translational controls in each. This result suggested that mRNA translation might be controlled by complicated mechanisms for response to each condition. Our results highlight the importance of dynamic changes in mRNA translation in plant development and growth.
Cancer survival is increasing as patients live longer with a cancer diagnosis. This success has implications for health service provision in that increasing numbers of adults who have received cancer therapy are requiring monitoring and long-term health care by a wide range of practitioners. Given these recent trends there is a need to explore staff perceptions and confidence in managing the consequences of cancer diagnosis and treatment in cancer survivors to enhance an integrated cancer service delivery.
This study examines the self-reported perceptions of competence in nurses and professionals allied to medicine providing survivorship services caring for adults after cancer treatment in both secondary and primary care.
A cross sectional survey of the adult cancer workforce using a self-assessment tool for assessing confidence in providing long-term cancer patient management. This study was a health service evaluation.
The study was conducted within the United Kingdom.
Respondents were 618 health nsform cancer survivor services then investment is required in education and capability planning across nurses, allied health professionals in both the hospital and the community setting.Uniseriate linear glandular trichomes occur on stems, leaves and flowering parts of Helianthus species and related taxa. Their metabolic activity and biological function are still poorly understood. A phytochemical study documented the accumulation of bisabolene type sesquiterpenes and flavonoids as the major constituents of the non-volatile metabolome of linear glandular trichomes in the common sunflower, Helianthus annuus. Besides known sesquiterpenes of the glandulone, helibisabonol and heliannuol type, four previously undescribed sesquiterpenes named glandulone D, E, F and helibisabonol C were identified by spectroscopic analysis. In addition, four known nevadensin type flavonoids varying in O-methoxy substitutions were found. None of them has previously been reported from Helianthus annuus.Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br(-) and I(-)), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd(2+) at 10(-8) M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface.In this work, we have devised a new approach to measure the critical pressure that a liquid marble can withstand. A liquid marble is gradually squeezed under a mechanical compression applied by two parallel plates. It ruptures at a sufficiently large applied pressure. Combining the force measurement and the high-speed imaging, we can determine the critical pressure that ruptures the liquid marble. This critical pressure, which reflects the mechanical robustness of liquid marbles, depends on the type and size of the stabilizing particles as well as the chemical nature of the liquid droplet. U0126 molecular weight By investigating the surface of the liquid marble, we attribute its rupture under the critical pressure to the low surface coverage of particles when highly stretched. Moreover, the applied pressure can be reflected by the inner Laplace pressure of the liquid marble considering the squeezing test is a quasi-static process. By analyzing the Laplace pressure upon rupture of the liquid marble, we predict the dependence of the critical pressure on the size of the liquid marble, which agrees well with experimental results.
There is an extensive body of literature on community-based participatory research (CBPR) and the role of community-academic partnerships, much of which has involved community partners in the conceptualization and preparation of publications. However, there has been a relative dearth of solely community voices addressing these topics, given the other roles and responsibilities which community members and leaders of community-based organizations (CBOs) have.
The purpose of this article is to share the perspectives of three long-time (>20 years) community partners involved in the Detroit Community-Academic Urban Research Center and its affiliated partnerships.
In this article, we community partners provide our assessment of the benefits and challenges in using a CBPR approach at the personal, organizational, and community levels; the factors that facilitate effective partnerships; and our lessons learned through engagement in CBPR. We also present specific recommendations from a community perspective to researchers and institutions interested in conducting CBPR.
In this article, we community partners provide our assessment of the benefits and challenges in using a CBPR approach at the personal, organizational, and community levels; the factors that facilitate effective partnerships; and our lessons learned through engagement in CBPR. We also present specific recommendations from a community perspective to researchers and institutions interested in conducting CBPR.