Thranerobinson7500

Z Iurium Wiki

Being signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S) can mediate a wide range of physiological processes caused by plant metal toxicity. Moreover, legume-rhizobium symbiosis has gained increasing attention in mitigating heavy metal stress. However, systematic regulatory mechanisms used for the exogenous application of signaling molecules to alter the resistance of legume-rhizobium symbiosis under metal stress are currently unknown. In this study, we examined the exogenous effects of sodium nitroprusside (SNP) as an NO donor additive and sodium hydrosulfide (NaHS) as a H2S donor additive on the phytotoxicity and soil quality of alfalfa (Medicago sativa)-rhizobium symbiosis in lead/cadmium (Pb/Cd)-contaminated soils. Results showed that rhizobia inoculation markedly promoted alfalfa growth by increasing chlorophyll content, fresh weight, and plant height and biomass. Compared to the inoculated rhizobia treatment alone, the addition of NO and H2S significantly reduced the bioaccumulation of Pbg the biochemical response of the plant-soil system, thereby minimizing potential health risks.Understanding the relationship between road-deposited sediments (RDS) and total suspended solids (TSS) is essential for managing non-point pollution. Studying the heavy metal concentrations of RDS and TSS in rainfall is important to the development of RDS management strategies and to the design of effective stormwater management practices. We investigated the heavy metal (V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Pb) in RDS and TSS in rainfall runoff to assess the metal pollution level and to evaluate the contribution of RDS heavy metal pollution in the TSS. The heavy metal pollution in RDS and TSS in industrial areas was relatively higher in small particles ( less then 125 μm), while TSS had a higher heavy metal concentration than RDS. Selleckchem 3-Methyladenine In addition, the concentration of heavy metals in TSS increased rapidly during the initial rainfall. The amount of particles larger than 125 μm also increased, suggesting that large metal particles accumulated in industrial areas were also discharged in the form of non-point pollution. The amount of RDS per unit of industrial area (g/m2) and the accumulation of heavy metals (Pb, Cu, and Zn) (mg/m2) were 15- and 8-54-fold higher than those of urban areas, respectively. Considering particles less then 125 μm, which can be easily transported or discharged during rainfall, the contribution rate of RDS to TSS was 41.3%, but the average contribution rate to heavy metals in TSS was 22.1%. The average load of heavy metals from industrial areas in TSS was 77.9%. The load of Cu, Ni, As, Cd, and Sn exceeded 90%, indicating that most of these metals were attributed to industrial activities related to metal processing. Our results suggest the importance of efficient road cleaning and rainfall runoff management strategies to solve the heavy metal pollution problem caused by non-point sources in industrial areas.Though invertebrates are one of the largest groups of animal species in the sea and exhibit robust immune and neural responses that are crucial for their health and survival, the potential immunotoxicity and neurotoxicity of the most produced chemical bisphenol A (BPA), especially in conjunction with microplastics (MPs), still remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA and MPs alone or in combination on a series of immune and neural biomarkers were investigated in the invertebrate bivalve species blood clam (Tegillarca granosa). Evident immunotoxicity as indicated by alterations in hematic indexes was observed after two weeks of exposure to BPA and MPs at environmentally realistic concentrations. The expression of four immune-related genes from the NFκB signaling pathway was also found to be significantly suppressed by the BPA and MP treatment. In addition, exposure to BPA and MPs led to an increase in the in vivo contents of three key neurotransmitters (GABA, DA, and ACh) but a decrease in the expression of genes encoding modulatory enzymes and receptors for these neurotransmitters, implying the evident neurotoxicity of BPA and MPs to blood clam. Furthermore, the results demonstrated that the toxic impacts exerted by BPA were significantly aggravated by the co-presence of MPs, which may be due to interactions between BPA and MPs as well as those between MPs and clam individuals.The influence of palm oil biodiesel content on the cytotoxicity, mutagenicity and genotoxicity of particle- and gas-phase diesel vehicle emissions was investigated. The emissions were collected on-board of a EURO IV diesel truck, fuelled with mixtures of 10% (B10), 20% (B20) and 100% (B100) of palm oil biodiesel, under real driving conditions. Organic extracts of the particulate matter (PM) and gases were characterised for 17 PAH (including EPA priority) and used for the biological assay. Increasing biodiesel content in the fuel mixture results in a decrease in the PM and PAH emission factors, both in the particulate and gas-phase. The majority of the PAH are present in the gas-phase. The mutagenic potencies, in TA98 bacteria, are higher for B20 in both phases, whereas the mutagenicity emission factor, that takes into account the lower emission of PM and PAH, is not significantly different between the fuels. Higher direct mutagenicity (TA98 + S9) is observed in all the tested fuels, indicating the action of carcinogenic compounds other than non-substituted PAH. The gas-phase extracts present higher cytotoxicity and genotoxicity in lung epithelial cell A549, which may be related to the higher PAH content in the gas-phase. The increase in biodiesel content have a different impact on cytotoxicity, being larger in the gas-phase and lower in the particle-phase. This indicates that pulmonary toxicity may be higher for the gaseous emissions, due to the role of different toxic compounds compared to the PM. The adverse biological effects when biodiesel content increases are not consequent with the reduction of the PAH characterised, indicating that other toxic compounds are more relevant. Further investigations to identify these compounds are required in order to update and focus the efforts regarding emission targets and controls.

Autoři článku: Thranerobinson7500 (Pugh Han)