Thorseneaton9092

Z Iurium Wiki

The Arabidopsis thaliana blue-light photoreceptor phototropin1 (phot1) is a blue light-activated Ser/Thr protein kinase that mediates various light responses including phototropism. Carboplatin ic50 The function of phot1 in hypocotyl phototropism is dependent on the light induction of ROOT PHOTOTROPISM2 (RPT2) proteins within a broad range of blue light intensities. It is not yet known however how RPT2 contributes to the photosensory adaptation of phot1 to high intensity blue light and the phototropic responses under bright light conditions. We show that RPT2 suppresses the activity of phot1 and demonstrate that RPT2 binds to the PHOT1 LOV1 (light, oxygen or voltage sensing 1) domain which is required for its high photosensitivity. Our biochemical analyses revealed that RPT2 inhibits autophosphorylation of phot1, suggesting that it suppresses the photosensitivity and/or kinase activity of phot1 through the inhibition of LOV1 function. We found that RPT2 proteins are degraded via a ubiquitin-proteasome pathway when phot1 is inactive and are stabilized under blue light in a phot1-dependent manner. We propose that RPT2 is a molecular rheostat that maintains a moderate activation level of phot1 under any light intensity conditions. © 2020 American Society of Plant Biologists. All rights reserved.Despite breakthroughs achieved with cancer checkpoint blockade therapy (CBT), many patients do not respond to anti-programmed cell death-1 (PD-1) due to primary or acquired resistance. Human tumor profiling and preclinical studies in tumor models have recently uncovered transforming growth factor-β (TGFβ) signaling activity as a potential point of intervention to overcome primary resistance to CBT. However, the development of therapies targeting TGFβ signaling has been hindered by dose-limiting cardiotoxicities, possibly due to nonselective inhibition of multiple TGFβ isoforms. Analysis of mRNA expression data from The Cancer Genome Atlas revealed that TGFΒ1 is the most prevalent TGFβ isoform expressed in many types of human tumors, suggesting that TGFβ1 may be a key contributor to primary CBT resistance. To test whether selective TGFβ1 inhibition is sufficient to overcome CBT resistance, we generated a high-affinity, fully human antibody, SRK-181, that selectively binds to latent TGFβ1 and inhibits its activation. Coadministration of SRK-181-mIgG1 and an anti-PD-1 antibody in mice harboring syngeneic tumors refractory to anti-PD-1 treatment induced profound antitumor responses and survival benefit. Specific targeting of TGFβ1 was also effective in tumors expressing more than one TGFβ isoform. Combined SRK-181-mIgG1 and anti-PD-1 treatment resulted in increased intratumoral CD8+ T cells and decreased immunosuppressive myeloid cells. No cardiac valvulopathy was observed in a 4-week rat toxicology study with SRK-181, suggesting that selectively blocking TGFβ1 activation may avoid dose-limiting toxicities previously observed with pan-TGFβ inhibitors. These results establish a rationale for exploring selective TGFβ1 inhibition to overcome primary resistance to CBT. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. The 12-lead electrocardiogram (ECG) is the current noninvasive clinical tool used to diagnose and localize cardiac arrhythmias. However, it has limited accuracy and is subject to operator bias. Here, we present electromechanical wave imaging (EWI), a high-frame rate ultrasound technique that can noninvasively map with high accuracy the electromechanical activation of atrial and ventricular arrhythmias in adult patients. This study evaluates the accuracy of EWI for localization of various arrhythmias in all four chambers of the heart before catheter ablation. Fifty-five patients with an accessory pathway (AP) with Wolff-Parkinson-White (WPW) syndrome, premature ventricular complexes (PVCs), atrial tachycardia (AT), or atrial flutter (AFL) underwent transthoracic EWI and 12-lead ECG. Three-dimensional (3D) rendered EWI isochrones and 12-lead ECG predictions by six electrophysiologists were applied to a standardized segmented cardiac model and subsequently compared to the region of successful ablation on 3D electroanatomical maps generated by invasive catheter mapping. There was significant interobserver variability among 12-lead ECG reads by expert electrophysiologists. EWI correctly predicted 96% of arrhythmia locations as compared with 71% for 12-lead ECG analyses [unadjusted for arrhythmia type odds ratio (OR), 11.8; 95% confidence interval (CI), 2.2 to 63.2; P = 0.004; adjusted for arrhythmia type OR, 12.1; 95% CI, 2.3 to 63.2; P = 0.003]. This double-blinded clinical study demonstrates that EWI can localize atrial and ventricular arrhythmias including WPW, PVC, AT, and AFL. EWI when used with ECG may allow for improved treatment for patients with arrhythmias. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC.

Autoři článku: Thorseneaton9092 (Egholm Holdt)