Thorntonmcgregor3063

Z Iurium Wiki

023), site of treatment (p = 0.001), and weight loss during RT (p = 0.044). Every 1 kg lost increased the risk of death by 25% compared with patients who maintained or gained weight during RT. Changes in phase angle and standardized phase angle after RT were not associated with increased mortality risk.

Weight loss during RT, site of treatment, and age are associated with a higher risk of death in cancer patients after the 10-year follow-up.

Weight loss during RT, site of treatment, and age are associated with a higher risk of death in cancer patients after the 10-year follow-up.Great advances in immune checkpoint blockade have resulted in a paradigm shift in patients with lung cancer. Immune-checkpoint inhibitor (ICI) treatment, either as monotherapy or combination therapy, has been established as the standard of care for patients with locally advanced/metastatic non-small cell lung cancer without EGFR/ALK alterations or extensive-stage small cell lung cancer. An increasing number of clinical trials are also ongoing to further investigate the role of ICIs in patients with early-stage lung cancer as neoadjuvant or adjuvant therapy. A-438079 Although PD-L1 expression and tumor mutational burden have been widely studied for patient selection, both of these biomarkers are imperfect. Due to the complex cancer-immune interactions among tumor cells, the tumor microenvironment and host immunity, collaborative efforts are needed to establish a multidimensional immunogram to integrate complementary predictive biomarkers for personalized immunotherapy. Furthermore, as a result of the wide use of ICIs, managing acquired resistance to ICI treatment remains an inevitable challenge. A deeper understanding of the underlying biological mechanisms of acquired resistance to ICIs is helpful to overcome these obstacles. In this review, we describe the cutting-edge progress made in patients with lung cancer, the optimal duration of ICI treatment, ICIs in some special populations, the unique response patterns during ICI treatment, the emerging predictive biomarkers, and our understanding of primary and acquired resistance mechanisms to ICI treatment.Negative regulation of antitumor T-cell-immune responses facilitates tumor-immune escape. Here, we show that deletion of CD147, a type I transmembrane molecule, in T cells, strongly limits in vivo tumor growth of mouse melanoma and lung cancer in a CD8+ T-cell-dependent manner. In mouse tumor models, CD147 expression was upregulated on CD8+ tumor-infiltrating lymphocytes (TILs), and CD147 was coexpressed with two immune-checkpoint molecules, Tim-3 and PD-1. Mining publicly available gene-profiling data for CD8+ TILs in tumor biopsies from metastatic melanoma patients showed a higher level of CD147 expression in exhausted CD8+ TILs than in other subsets of CD8+ TILs, along with expression of PD-1 and TIM-3. Additionally, CD147 deletion increased the abundance of TILs, cytotoxic effector function of CD8+ T cells, and frequency of PD-1+ CD8+ TILs, and partly reversed the dysfunctional status of PD-1+Tim-3+CD8+ TILs. The cytotoxic transcription factors Runx3 and T-bet mediation enhanced antitumor responses by CD147-/- CD8+ T cells. Moreover, CD147 deletion in T cells increased the frequency of TRM-like cells and the expression of the T-cell chemokines CXCL9 and CXCL10 in the tumor microenvironment. Analysis of tumor tissue samples from patients with non-small-cell lung cancer showed negative correlations between CD147 expression on CD8+ TILs and the abundance of CD8+ TILs, histological grade of the tumor tissue samples, and survival of patients with advanced tumors. Altogether, we found a novel function of CD147 as a negative regulator of antitumor responses mediated by CD8+ TILs and identified CD147 as a potential target for cancer immunotherapy.Themis is a T cell lineage-specific molecule that is involved in TCR signal transduction. The effects of germline Themis deletion on peripheral CD4+ T cell function have not been described before. In this study, we found that Themis-deficient CD4+ T cells had poor proliferative responses, reduced cytokine production in vitro and weaker inflammatory potential, as measured by their ability to cause colitis in vivo. Resting T cells are quiescent, whereas activated T cells have high metabolic demands. Fulfillment of these metabolic demands depends upon nutrient availability and upregulation of nutrient intake channels after efficient TCR signal transduction, which leads to metabolic reprogramming in T cells. We tested whether defects in effector functions were caused by impaired metabolic shifts in Themis-deficient CD4+ T cells due to inefficient TCR signal transduction, in turn caused by the lack of Themis. We found that upon TCR stimulation, Themis-deficient CD4+ T cells were unable to upregulate the expression of insulin receptor (IR), glucose transporter (GLUT1), the neutral amino acid transporter CD98 and the mTOR pathway, as measured by c-Myc and pS6 expression. Mitochondrial analysis of activated Themis-deficient CD4+ T cells showed more oxidative phosphorylation (OXPHOS) than aerobic glycolysis, indicating defective metabolic reprogramming. Furthermore, we found reduced NFAT translocation in Themis-deficient CD4+ T cells upon TCR stimulation. Using previously reported ChIP-seq and RNA-seq data, we found that NFAT nuclear translocation controls IR gene expression. Together, our results describe an internal circuit between TCR signal transduction, NFAT nuclear translocation, and metabolic signaling in CD4+ T cells.

Extreme preterm infants are a growing population in neonatal intensive care units who carry a high mortality and morbidity. Multiple factors play a role in preterm birth, resulting in major impact on organogenesis leading to complications including bronchopulmonary dysplasia (BPD). The goal of this study was to identify biomarker signatures associated with prematurity and BPD.

We analyzed miRNA and mRNA profiles in tracheal aspirates (TAs) from 55 infants receiving invasive mechanical ventilation. Twenty-eight infants were extremely preterm and diagnosed with BPD, and 27 were term babies receiving invasive mechanical ventilation for elective procedures.

We found 22 miRNAs and 33 genes differentially expressed (FDR < 0.05) in TAs of extreme preterm infants with BPD vs. term babies without BPD. Pathway analysis showed associations with inflammatory response, cellular growth/proliferation, and tissue development.

Specific mRNA-miRNA signatures in TAs may serve as biomarkers for BPD pathogenesis, a consequence of extreme prematurity.

Autoři článku: Thorntonmcgregor3063 (Cahill Liu)