Thomsonwyatt4398

Z Iurium Wiki

Iron-sulfur (Fe-S) clusters are ubiquitous protein cofactors that are required for many important biological processes including oxidative respiration, nitrogen fixation, and photosynthesis. Biosynthetic pathways assemble Fe-S clusters with different iron-to-sulfur stoichiometries and distribute these clusters to appropriate apoproteins. In the ISC pathway, the pyridoxal 5'-phosphate-dependent cysteine desulfurase enzyme IscS provides sulfur to the scaffold protein IscU, which templates the Fe-S cluster assembly. Despite their functional importance, mechanistic details for cluster synthesis have remained elusive. Recent advances in native mass spectrometry (MS) have allowed proteins to be preserved in native-like structures and support applications in the investigation of protein structure, dynamics, ligand interactions, and the identification of protein-associated intermediates. Here, we prepared samples under anaerobic conditions and then applied native MS to investigate the molecular mechanism for Fe-S cluster synthesis. This approach was validated by the high agreement between native MS and traditional visible circular dichroism spectroscopic assays. Time-dependent native MS experiments revealed potential iron- and sulfur-based intermediates that decay as the [2Fe-2S] cluster signal developed. Additional experiments establish that (i) Zn(II) binding stabilizes IscU and protects the cysteine residues from oxidation, weakens the interactions between IscU and IscS, and inhibits Fe-S cluster biosynthesis; and (ii) Fe(II) ions bind to the IscU active site cysteine residues and another lower affinity binding site and promote the intermolecular sulfur transfer reaction from IscS to IscU. Overall, these results support an iron-first model for Fe-S cluster synthesis and highlight the power of native MS in defining protein-associated intermediates and elucidating mechanistic details of enzymatic processes.The significant amount of secondary materials stocked in products, buildings, and infrastructures has directed increasing attention to urban mining and circular economy. Circular economy strategies and activities in the construction industry are, however, often hindered by a lack of detailed knowledge on the type, amount, and distribution of secondary materials in the urban built environment. In this study, we developed such an urban resource cadaster through an integration of the geo-localized, bottom-up material stock analysis with primary data on building material intensity coefficients for a case of Odense, the third largest city in Denmark that is undergoing major construction works. We quantified the total amount and spatial (including vertical) distribution of 46 construction materials stocked in buildings (residential and nonresidential), roads, and pipe networks (wastewater, water supply, and natural gas). In total, 66.7 megatons (or 329 tons per capita) of construction materials are stocked in Odense, in which aboveground stock only makes up for a third of the weight but hosts a wide variety of materials. This urban resource cadaster at high resolution can inform a variety of stakeholders along the value chain of the construction industry to better plan for construction materials and component recovery and smart waste management.The α-hydroxyalkyl-hydroperoxides [R-(H)C(-OH)(-OOH), α-HH] produced in the ozonolysis of unsaturated organic compounds may contribute to secondary organic aerosol (SOA) aging. α-HHs' inherent instability, however, hampers their detection and a positive assessment of their actual role. Here we report, for the first time, the rates and products of the decomposition of the α-HHs generated in the ozonolysis of atmospherically important monoterpenes α-pinene (α-P), d-limonene (d-L), γ-terpinene (γ-Tn), and α-terpineol (α-Tp) in water/acetonitrile (W/AN) mixtures. We detect α-HHs and multifunctional decomposition products as chloride adducts by online electrospray ionization mass spectrometry. Experiments involving D2O and H218O, instead of H216O, and an OH-radical scavenger show that α-HHs decompose into gem-diols + H2O2 rather than free radicals. α-HHs decay mono- or biexponentially depending on molecular structure and solvent composition. e-Fold times, τ1/e, in water-rich solvent mixtures range from τ1/e = 15-45 min for monoterpene-derived α-HHs to τ1/e > 103 min for the α-Tp-derived α-HH. All τ1/e's dramatically increase in less then 20% (v/v) water. Decay rates of the α-Tp-derived α-HH in pure water increase at lower pH (2.3 ≤ pH ≤ 3.3). The hydroperoxides detected in day-old SOA samples may reflect their increased stability in water-poor media and/or the slow decomposition of α-HHs from functionalized terpenes.Phylogenetically diverse species of bacteria can mediate anaerobic oxidation of ferrous iron [Fe(II)] and/or arsenite [As(III)] coupled to nitrate reduction, impacting the biogeochemical cycles of Fe and As. However, the mechanisms for nitrate-dependent anaerobic oxidation of Fe(II) and As(III) remain unclear. In this study, we isolated two bacterial strains from arsenic-contaminated paddy soils, Ensifer sp. ST2 and Paracoccus sp. QY30. Both strains were capable of anaerobic As(III) oxidation, but only QY30 could oxidize Fe(II) under nitrate-reducing conditions. Both strains contain the As(III) oxidase gene aioA, whose expression was induced greatly by As(III) exposure. Both strains contain the whole suite of genes for complete denitrification, but the nitrite reductase gene nirK was not expressed in QY30 and nitrite accumulated under nitrate-reducing conditions. When the functional nirK gene was knocked out in strain ST2, its nitrite reduction ability was completely abolished and nitrite accumulated in the medium. Moreover, the ST2ΔnirK mutant gained the ability to oxidize Fe(II). check details When nirK gene from ST2 was introduced to QY30, the recombinant strain QY30nirK gained the ability to reduce nitrite but lost the ability to oxidize Fe(II). These genetic manipulations did not affect the ability of both strains to oxidize As(III). Our results indicate that nitrite accumulation is required for anaerobic oxidation of Fe(II) but not for As(III) oxidation in these strains. The results suggest that anaerobic Fe(II) oxidation in the two bacterial strains is primarily driven by abiotic reaction of Fe(II) with nitrite, while reduction of nitrate to nitrite is sufficient for redox coupling with anaerobic As(III) oxidation catalyzed by Aio. Deletion of nirK gene in denitrifiers can enhance anaerobic Fe(II) oxidation.The widespread application of sewage sludge produced from wastewater treatment plants for agricultural use has been regarded as a primary source of microplastics (MPs) into soils. However, little is known regarding MPs in sludge-based fertilizers and their relevant fate in soils as being applied in agriculture. We comprehensively investigated the abundance, polymer size, type, and morphology of MPs in dewatered sludge, sewage sludge composts, sludge-based fertilizer-amended soils, and earthworms by stereoscopy and micro Fourier transform infrared (μ-FTIR) spectrometry methods. The results clearly showed that the quantity of MPs in soils exhibited a close correlation with the application rate of sludge-based fertilizers. The total abundances of MPs were 545.9 and 87.6 items/kg in soils after annual amendment with 30 (field A) and 15 t/ha (field B) of sludge composts, which is significantly higher than that without compost application (field C, 5.0 items/kg). Correspondingly, MPs were found in earthworms with low quantities of 1.8 and 0.4 items/individual in fields A and B, respectively, while no MP was detected in field C. We speculate that sludge composts may act as a vehicle of MPs into soils and then enter soil biota and in turn influence the spread of MPs in the environment.Mechanophores (mechanoresponsive molecules) offer great promises for the development of smart force-responsive materials. The activity of a mechanophore can be tuned by altering its structure or the composition of the actuating polymer. Here we show that a [2]catenane can act as a mechanical protecting group by diverting tensional forces away from a mechanically active functional group embedded in one of its rings. This property emerges from the mobility of the two rings of the catenane, which are able to rotate along each other until the tension equalizes over the entirety of the catenated framework. This approach provides a new way to control the mechanical activity of a mechanophore.Contamination of 99TcO4-, a problematic radioactive anion in the nuclear fuel cycle, in groundwater has been observed in a series of legacy nuclear sites, representing a notable radiation hazard and environmental concern. The development of convenient, rapid, and sensitive detection methods is therefore critical for radioactivity control and remediation tasks. Traditional detection methods suffer from clear demerits of either the presence of large interference from coexisting radioactive species (e.g., radioactivity counting methods) or the requirement of extensive instrumentation and analysis procedure (e.g., mass spectrometry). Here, we constructed a luminescent iridium(III) organometallic complex (Ir(ppy)2(bpy)+; ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine)-grafted porous aromatic framework (Ir-PAF) for the first time, which can be utilized for efficient, facile, and selective detection of trace ReO4-/TcO4- in aqueous solutions. Importantly, the luminescence intensity of Ir-PAF is greatly enhanced in the presence of ReO4-/TcO4-, giving rise to a distinct turn-on sensor with the detection limit of 556.9 μg/L. Such a superior detection capability originates from the highly selective and strong interaction between ReO4-/TcO4- and Ir(ppy)2(bpy)+, leading to an efficient pre-enrichment of ReO4-/TcO4- during analysis and subsequently a much weaker nonradiative decay of the luminescence of Ir(ppy)2(bpy)+, as illustrated by density functional theory (DFT) calculation as well as quantum yield and fluorescence lifetime measurements. Successful quantification of trace ReO4- in simulated Hanford low-activity waste (LAW) solution containing large excess of Cl-, NO3-, and NO2- was demonstrated, highlighting the bright future of luminescent PAFs in the area of chemical sensing.Flexible pressure sensing is required for the excellent sensing performance and dexterous manipulation of the measured objects in their potential applications. Particularly, the ability to measure and discriminate the direction of force, contact surface, and contact location in real time is crucial for robotics with tactile feedback. Herein, a three-dimensional elastic porous carbon nanotube (CNT) sponge is synthesized by chemical vapor deposition, which is successfully applied in the piezoresistive sensor. In situ scanning electron microscopy study intuitively illustrates the characteristics that the microfibers of the CNT sponge distort and contact with each other under an external force. As a result, new conductive paths are created at the contact points between the CNT microfibers, which provides a basic sensing principle for a piezoresistive sensor. The CNT sponge-based sensor has an ultrahigh sensitivity in a wide pressure range (0-4 kPa for 4015.8 kPa-1), a rapid response time of 120 ms, and excellent durability over 5000 cycles.

Autoři článku: Thomsonwyatt4398 (Gregory Holder)