Swainshelton6113

Z Iurium Wiki

We explored the coupling of laccases to magnetic nanoparticles (MNPs) with different surface chemical coating. Two laccase variants offering two opposite and precise orientations of the substrate oxidation site were immobilised onto core-shell MNPs presenting either aliphatic aldehyde, aromatic aldehyde or azide functional groups at the particles surface. Oxidation capabilities of the six-resulting laccase-MNP hybrids were compared on ABTS and coniferyl alcohol. FX11 Herein, we show that the original interfaces created differ substantially in their reactivities with an amplitude from 1 to > 4 folds depending on the nature of the substrate. Taking enzyme orientation into account in the design of surface modification represents a way to introduce selectivity in laccase catalysed reactions.In alcoholic liver disease (ALD) research, animal models, as one of the most popular methods to explore pathology and therapeutic drug screening, show the limitations of expensive cost and ethic, as well as long modeling time. To minimize the use of animal models in ALD research, an artificial liver model has been developed by incorporating HepG2 cells into hydrogel matrix based on difunctional hyaluronan and collagen. And on this basis an alcohol-induced ALD model in vitro by adding alcohol in the engineering process has been established. Results showed that the construct exhibited a simulated synthetic and metabolic liver function thanks to the bionic fibrillar and viscoelastic characteristics of hydrogels. And the in vitro alcohol-induced ALD model was also proved to be successfully established, even presenting equal results with ALD mice. Furthermore, epigallocatechin gallate (EGCG) as an intervention on ALD was confirmed in both in vitro and in vivo model. The findings indicate our simple artificial liver model is not only highly predictive but also easy to apply to drug screening and implantation studies, suggesting a promising alternative to animal models. Moreover, as the main active ingredient of tea, EGCG's effective intervention and reversal effect on fatty liver provides support for the theory that green tea could prevent alcoholic fatty liver.The release and biodistribution of drugs in the body have an important impact on tumor diagnosis and treatment. Near-infrared (NIR) fluorescent active fluorophores with good photostability are used to detect drug release and perform in vivo imaging. Here, we developed a glutathione-responsive NIR prodrug POEGMA-b-P(CPT-CyOH) (PCC) for effective cancer diagnosis and treatment, whereby the camptothecin (CPT) and NIR fluorophore CyOH in PCC are connected by disulfide bonds. In vitro experiments confirmed that PCC was quickly taken up by cells. The high concentration of tumor intracellular glutathione caused the cleavage of the PCC disulfide bonds, leading to the release of the chemotherapeutic drug CPT, indicating that PCC can promote apoptosis. Moreover, owing to the fluorescent properties of CyOH, PCC was successfully used for in vivo imaging to observe the drug penetration and enrichment capabilities in tumors. Finally, PCC successfully inhibited tumor growth, indicating that the prodrug has a good anti-tumor effect. This work provides new strategies for chemical drug delivery and precise cancer treatment.Graphene oxide (GO), one of the popular materials in recent years, has been synthesized according to the modified Hummers' method. Stable dispersions of different amounts of negatively charged GO were prepared in aqueous media. The GO/dye composites were prepared in deionized water by a simple method with the positively charged Safranin T compound (SfT), which is known to have strong fluorescence properties. By changing the GO/dye ratio, it was obtained stable composites in aqueous media. It was investigated the interaction of SfT with GO in an aqueous solution under the critical micelle concentration (CMC), at the CMC and above the CMC by adding sodium dodecyl sulfate (SDS). It was clarified the formation of GO-SfT composites by using spectroscopic techniques. In these composites, the effect of GO layers on the SfT's photophysical properties was examined by absorption and fluorescence spectroscopy techniques. The change in the quenching effect of GO was monitored both adding a stabilizing electrolyte (NaCl) to the media and changing the pH of the medium. The evaluation was on the probability of the GO-SfT-SDS ternary system being a pH sensing biological sensor material. As a result of this study, it was thought that the GO-SfT-SDS system could be functionalized as a fluorescent pH sensor by taking advantage of GO's sensitivity to pH.A commercial high-chromium contained GH648 superalloy was fabricated by selective laser melting (SLM), followed by solution treatment at 1140 °C for 1 h and subsequent aging treatment at 900 °C for 16 h. The precipitation and transformation of σ phase has been characterized. It has been shown that σ precipitates formed after solution treatment, attributed to the segregation of Mo element in the subgrain boundaries and also the difference between the diffusion ability of subgrain boundaries and lattice. Further aging treatment leads to the transformation from σ phase to α-Cr phase. The transformation of σ phase is owing to Mo diffusing during the aging processing. The nucleation points of α-Cr phase are mainly located at triple junction, incoherent γ/σ interfaces, subgrain boundaries and other high energy interfacial regions. The unique precipitation behavior leads to the small size and uniform distribution of the α-Cr phase in the GH648 superalloy.In this study, a double E strategy (enzymes and enhancer) characterized by high efficiency for enhancing sewage sludge anaerobic digestion (AD) is proposed. This strategy combines addition of trace elements (TEs) enhancer and enzyme pretreatment, inducing a synergistic effect on AD, and it is more effective and economical compared with TEs addition or enzyme pretreatment in isolation. When adding 400 U/g cocktail enzymes and 1.24% trance elements enhancers, the cumulative methane production and the maximum daily methane increased yield by 45.29% and 84.7%, respectively. According to microbial community analysis, the double E strategy significantly motivate the growth of acetogens and protein fermenting bacterium. The relative abundance of Fermentimonas and Lutispora increased by 6.15% and 5.4%, respectively. Archaeal community analysis and changes in the mcrA gene abundance demonstrate enrichment of hydrogenotrophic methanogens, with the methanogens exhibiting high vitalities and stress resistance. The double E strategy could be a promising way to improve industrial sewage sludge AD efficiency.

Autoři článku: Swainshelton6113 (Ottesen Lambertsen)