Sunesenpratt1212

Z Iurium Wiki

As a result, the helical antenna, which is smaller than the dipole, was chosen as the signal's source. For both the numerical and physical phantom studies, the proposed technique with adaptive body model enhances localization accuracy by roughly 30%.Damage detection is important for the maintenance of automated machines. General non-destructive testing techniques require static equipment and complex analysis processes, which restricts the maintenance of automated machines. Therefore, this paper proposes an acoustic emission (AE) tomography method for detecting cavity damage in automated machines, combining the fast sweeping method (FSM) and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method. This approach overcomes the limitations of real-time AE detection for cavity damage in continuous and homogeneous materials. The proposed method has been applied in numerical and laboratory experiments to validate its feasibility. The results show that the inversed low-velocity regions correspond to the actual cavity regions, and the sources of cavity damage can be effectively detected. This paper provides a new perspective for AE testing technologies, and also lays the foundation for other non-destructive testing techniques, in terms of cavity damage detection.For simplifying and speeding up the development of the Internet of Things (IoT) ecosystem, there has been a proliferation of IoT platforms, built up according to different design principles, computing paradigms, technologies, and targets. This paper proposes a review of main examples populating the wide landscape of IoT platforms and their comparison based on the IoT-A reference architecture. In such a way, heterogeneous IoT platforms (both current and future) can be analyzed regardless of their low-level specifications but exclusively through the lens of those key functionalities and architectural building blocks that enable the interplay among devices, data flow, software, and stakeholders within the IoT ecosystem. Among these, security by design (i.e., the inclusion of security design principles, technology, and governance at every level) must be integrated into every tier, component, and application to minimize the risk of cyber threats and preserve the integrity of the IoT platforms, not only within individual components but also for all the components working together as a whole.In remote sensing applications and medical imaging, one of the key points is the acquisition, real-time preprocessing and storage of information. Due to the large amount of information present in the form of images or videos, compression of these data is necessary. Compressed sensing is an efficient technique to meet this challenge. It consists in acquiring a signal, assuming that it can have a sparse representation, by using a minimum number of nonadaptive linear measurements. After this compressed sensing process, a reconstruction of the original signal must be performed at the receiver. Reconstruction techniques are often unable to preserve the texture of the image and tend to smooth out its details. To overcome this problem, we propose, in this work, a compressed sensing reconstruction method that combines the total variation regularization and the non-local self-similarity constraint. The optimization of this method is performed by using an augmented Lagrangian that avoids the difficult problem of nonlinearity and nondifferentiability of the regularization terms. The proposed algorithm, called denoising-compressed sensing by regularization (DCSR) terms, will not only perform image reconstruction but also denoising. To evaluate the performance of the proposed algorithm, we compare its performance with state-of-the-art methods, such as Nesterov's algorithm, group-based sparse representation and wavelet-based methods, in terms of denoising and preservation of edges, texture and image details, as well as from the point of view of computational complexity. Our approach permits a gain up to 25% in terms of denoising efficiency and visual quality using two metrics peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems. Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion, migration, and differentiation. Given the strong interplay between cells and their microenvironment, the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an important role in the transmission of external stimuli to single cells within the tissue. Vice versa, cells themselves also use self-generated forces to probe the biophysical properties of the ECM. ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in health and disease conditions of living organisms. Force sensing in biological systems is therefore crucial to dissecting and understanding complex biological processes, such as mechanotransduction. Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in biophysics and mechanobiology. In this work, we report on the application of AFM to the study of biomechanical fingerprints of different components of biological systems, such as the ECM, the whole cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that physical observables such as the (spatially resolved) Young's Modulus (YM) of elasticity of ECMs or cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological conditions, or gene regulation.Dietary behaviour is a core element in diabetes self-management. There are no remarkable differences between nutritional guidelines for people with type 2 diabetes and healthy eating recommendations for the general public. This study aimed to evaluate dietary differences between subjects with and without diabetes and to describe any emerging dietary patterns characterizing diabetic subjects. In this cross-sectional study conducted on older adults from Southern Italy, eating habits in the "Diabetic" and "Not Diabetic" groups were assessed with FFQ, and dietary patterns were derived using an unsupervised learning algorithm principal component analysis. Diabetic subjects (n = 187) were more likely to be male, slightly older, and with a slightly lower level of education than subjects without diabetes. The diet of diabetic subjects reflected a high-frequency intake of dairy products, eggs, vegetables and greens, fresh fruit and nuts, and olive oil. On the other hand, the consumption of sweets and sugary foods was reduced compared to non-diabetics (23.74 ± 35.81 vs. 16.52 ± 22.87; 11.08 ± 21.85 vs. 7.22 ± 15.96). The subjects without diabetes had a higher consumption of red meat, processed meat, ready-to-eat dishes, alcoholic drinks, and lower vegetable consumption. The present study demonstrated that, in areas around the Mediterranean Sea, older subjects with diabetes had a healthier diet than their non-diabetic counterparts.More than 96% of steel in the world is produced via the method of continuous casting. The flow condition in the mould, where the initial solidification occurs, has a significant impact on the quality of steel products. It is important to have timely, and perhaps automated, control of the flow during casting. This work presents a new concept of using contactless inductive flow tomography (CIFT) as a sensor for a novel controller, which alters the strength of an electromagnetic brake (EMBr) of ruler type based on the reconstructed flow structure in the mould. The method was developed for the small-scale Liquid Metal Model for Continuous Casting (mini-LIMMCAST) facility available at the Helmholtz-Zentrum Dresden-Rossendorf. As an example of an undesired flow condition, clogging of the submerged entry nozzle (SEN) was modelled by partly closing one of the side ports of the SEN; in combination with an active EMBr, the jet penetrates deeper into the mould than when the EMBr is switched off. Corresponding flow patterns are detected by extracting the impingement position of the jets at the narrow faces of the mould from the CIFT reconstruction. The controller is designed to detect to undesired flow condition and switch off the EMBr. The temporal resolution of CIFT is 0.5 s.In the fault classification process, filter methods that sequentially remove unnecessary features have long been studied. However, the existing filter methods do not have guidelines on which, and how many, features are needed. This study developed a multi-filter clustering fusion (MFCF) technique, to effectively and efficiently select features. In the MFCF process, a multi-filter method combining existing filter methods is first applied for feature clustering; then, key features are automatically selected. The union of key features is utilized to find all potentially important features, and an exhaustive search is used to obtain the best combination of selected features to maximize the accuracy of the classification model. In the rotating machinery examples, fault classification models using MFCF were generated to classify normal and abnormal conditions of rotational machinery. The obtained results demonstrated that classification models using MFCF provide good accuracy, efficiency, and robustness in the fault classification of rotational machinery.Many transport systems in the real world can be modeled as networked systems. Due to limited resources, only a few nodes can be selected as seeds in the system, whose role is to spread required information or control signals as widely as possible. This problem can be modeled as the influence maximization problem. Most of the existing selection strategies are based on the invariable network structure and have not touched upon the condition that the network is under structural failures. Related studies indicate that such strategies may not completely tackle complicated diffusion tasks in reality, and the robustness of the information diffusion process against perturbances is significant. To give a numerical performance criterion of seeds under structural failure, a measure has been developed to define the robust influence maximization (RIM) problem. Further, a memetic optimization algorithm (MA) which includes several problem-orientated operators to improve the search ability, termed RIMMA, has been presented to deal with the RIM problem. Experimental results on synthetic networks and real-world networks validate the effectiveness of RIMMA, its superiority over existing approaches is also shown.Ireland has a wide variety of farmlands that includes arable fields, grassland, hedgerows, streams, lakes, rivers, and native woodlands. Traditional methods of habitat identification rely on field surveys, which are resource intensive, therefore there is a strong need for digital methods to improve the speed and efficiency of identification and differentiation of farmland habitats. This is challenging because of the large number of subcategories having nearly indistinguishable features within the habitat classes. Heterogeneity among sites within the same habitat class is another problem. Therefore, this research work presents a preliminary technique for accurate farmland classification using stacked ensemble deep convolutional neural networks (DNNs). Etrasimod ic50 The proposed approach has been validated on a high-resolution dataset collected using drones. The image samples were manually labelled by the experts in the area before providing them to the DNNs for training purposes. Three pre-trained DNNs customized using the transfer learning approach are used as the base learners.

Autoři článku: Sunesenpratt1212 (Mathiesen Hays)