Stevensonabrahamsen7708

Z Iurium Wiki

Results from quantum-chemistry modeling (unrestricted Hartree-Fock/second-order Møller-Plesset perturbation theory) support the (IPS6)5- assignment for the EPR spectrum. The transient two-beam coupling gain can be improved in these photorefractive Sn2P2S6 crystals by better controlling the point defects that trap charge.Computational determination of the equilibrium state of heterogeneous phospholipid membranes is a significant challenge. We wish to explore the rich phase diagram of these multi-component systems. However, the diffusion and mixing times in membranes are long compared to typical time scales of computer simulations. Here, we evaluate the combination of the enhanced sampling techniques molecular dynamics with alchemical steps and Monte Carlo with molecular dynamics with a coarse-grained model of membranes (Martini) to reduce the number of steps and force evaluations that are needed to reach equilibrium. We illustrate a significant gain compared to straightforward molecular dynamics of the Martini model by factors between 3 and 10. The combination is a useful tool to enhance the study of phase separation and the formation of domains in biological membranes.Monitoring thermal processes occurring in molecular films on surfaces can provide insights into physical events such as morphology changes and phase transitions. Here, we demonstrate that temperature-programmed contact potential difference (TP-∆CPD) measurements employed by a Kelvin probe under ultrahigh vacuum conditions and their temperature derivative can track films' restructure and crystallization occurring in amorphous solid water (ASW) at temperatures well below the onset of film desorption. The effects of growth temperature and films' thickness on the spontaneous polarization that develops within ASW films grown at 33 K-120 K on top of a Ru(0001) substrate are reported. Electric fields of ∼106 V/m are developed within the ASW films despite low average levels of molecular dipole alignment ( less then 0.01%) normal to the substrate plane. Upon annealing, an irreversible morphology-dependent depolarization has been recorded, indicating that the ASW films keep a "memory" of their thermal history. We demonstrate that TP-∆CPD measurements can track the collapse of the porous structure at temperatures above the growth and the ASW-ice Ic and ASW-ice Ih transitions at 131 K and 157 K, respectively. These observations have interesting implications for physical and chemical processes that take place at the interstellar medium such as planetary formation and photon- and electron-induced synthesis of new molecules.Gas phase intermolecular energy transfer (IET) is a fundamental component of accurately explaining the behavior of gas phase systems in which the internal energy of particular modes of molecules is greatly out of equilibrium. In this work, chemical dynamics simulations of mixed benzene/N2 baths with one highly vibrationally excited benzene molecule (Bz*) are compared to experimental results at 140 K. Two mixed bath models are considered. In one, the bath consists of 190 N2 and 10 Bz, whereas in the other bath, 396 N2 and 4 Bz are utilized. The results are compared to results from 300 K simulations and experiments, revealing that Bz*-Bz vibration-vibration IET efficiency increased at low temperatures consistent with longer lived "chattering" collisions at lower temperatures. In the simulations, at the Bz* excitation energy of 150 kcal/mol, the averaged energy transferred per collision, ⟨ΔEc⟩, for Bz*-Bz collisions is found to be ∼2.4 times larger in 140 K than in 300 K bath, whereas this value is ∼1.3 times lower for Bz*-N2 collisions. The overall ⟨ΔEc⟩, for all collisions, is found to be almost two times larger at 140 K compared to the one obtained from the 300 K bath. Such an enhancement of IET efficiency at 140 K is qualitatively consistent with the experimental observation. However, the possible reasons for not attaining a quantitative agreement are discussed. These results imply that the bath temperature and molecular composition as well as the magnitude of vibrational energy of a highly vibrationally excited molecule can shift the overall timescale of rethermalization.Understanding phononic heat transport processes in molecular junctions is a central issue in the developing field of nanoscale heat conduction. Here, we present a Langevin dynamics simulation framework to investigate heat transport processes in molecular junctions at and beyond the linear response regime and apply it to saturated and unsaturated linear hydrocarbon chains connecting two gold substrates. Thermal boundary conditions represented by Markovian noise and damping are filtered through several (up to four) gold layers to provide a realistic and controllable bath spectral density. Classical simulations using the full universal force field are compared with quantum calculations that use only the harmonic part of this field. The close agreement found at about room temperature between these very different calculations suggests that heat transport at such temperatures is dominated by lower frequency vibrations whose dynamics is described well by classical mechanics. The results obtained for alkanedithiol molecules connecting gold substrates agree with previous quantum calculations based on the Landauer formula and match recent experimental measurements [e.g., thermal conductance around 20 pW/K for alkanedithiols in single-molecule junctions (SMJs)]. Heat conductance simulations on polyynes of different lengths illuminate the effects of molecular conjugation on thermal transport. The difference between alkanes and polyynes is not large but correlates with the larger rigidity and stronger mode localization that characterize the polyyne structure. This computational approach has been recently used [R. Chen, I. Autophinib chemical structure Sharony, and A. Nitzan, J. Phys. Chem. Lett. 11, 4261-4268 (2020)] to unveil local atomic heat currents and phononic interference effect in aromatic-ring based SMJs.Ocean-atmosphere interactions control the composition of the atmosphere, hydrological cycle, and temperature of our planet and affect human and ecosystem health. Our understanding of the impact of ocean emissions on atmospheric chemistry and climate is limited relative to terrestrial systems, despite the fact that oceans cover the majority (71%) of the Earth. As a result, the impact of marine aerosols on clouds represents one of the largest uncertainties in our understanding of climate, which is limiting our ability to accurately predict the future temperatures of our planet. The emission of gases and particles from the ocean surface constitutes an important chemical link between the ocean and atmosphere and is mediated by marine biological, physical, and chemical processes. It is challenging to isolate the role of biological ocean processes on atmospheric chemistry in the real world, which contains a mixture of terrestrial and anthropogenic emissions. One decade ago, the NSF Center for Aerosol Impacts on Chemistry of the Environment (CAICE) took a unique ocean-in-the-laboratory approach to study the factors controlling the chemical composition of marine aerosols and their effects on clouds and climate.

Autoři článku: Stevensonabrahamsen7708 (Marker Tranberg)