Stanleyfitzgerald5856
The latter have an estimated energy of around 1056 erg, which is sufficient to perturb the structure, energy content and chemical enrichment of the circumgalactic medium of the Milky Way.Capillary condensation of water is ubiquitous in nature and technology. It routinely occurs in granular and porous media, can strongly alter such properties as adhesion, lubrication, friction and corrosion, and is important in many processes used by microelectronics, pharmaceutical, food and other industries1-4. The century-old Kelvin equation5 is frequently used to describe condensation phenomena and has been shown to hold well for liquid menisci with diameters as small as several nanometres1-4,6-14. For even smaller capillaries that are involved in condensation under ambient humidity and so of particular practical interest, the Kelvin equation is expected to break down because the required confinement becomes comparable to the size of water molecules1-22. Here we use van der Waals assembly of two-dimensional crystals to create atomic-scale capillaries and study condensation within them. Our smallest capillaries are less than four ångströms in height and can accommodate just a monolayer of water. Surprisingly, even at this scale, we find that the macroscopic Kelvin equation using the characteristics of bulk water describes the condensation transition accurately in strongly hydrophilic (mica) capillaries and remains qualitatively valid for weakly hydrophilic (graphite) ones. We show that this agreement is fortuitous and can be attributed to elastic deformation of capillary walls23-25, which suppresses the giant oscillatory behaviour expected from the commensurability between the atomic-scale capillaries and water molecules20,21. Our work provides a basis for an improved understanding of capillary effects at the smallest scale possible, which is important in many realistic situations.Recent studies have suggested that lymphatics help to restore heart function after cardiac injury1-6. Here we report that lymphatics promote cardiac growth, repair and cardioprotection in mice. We show that a lymphoangiocrine signal produced by lymphatic endothelial cells (LECs) controls the proliferation and survival of cardiomyocytes during heart development, improves neonatal cardiac regeneration and is cardioprotective after myocardial infarction. see more Embryos that lack LECs develop smaller hearts as a consequence of reduced cardiomyocyte proliferation and increased cardiomyocyte apoptosis. Culturing primary mouse cardiomyocytes in LEC-conditioned medium increases cardiomyocyte proliferation and survival, which indicates that LECs produce lymphoangiocrine signals that control cardiomyocyte homeostasis. Characterization of the LEC secretome identified the extracellular protein reelin (RELN) as a key component of this process. Moreover, we report that LEC-specific Reln-null mouse embryos develop smaller hearts, that RELN is required for efficient heart repair and function after neonatal myocardial infarction, and that cardiac delivery of RELN using collagen patches improves heart function in adult mice after myocardial infarction by a cardioprotective effect. These results highlight a lymphoangiocrine role of LECs during cardiac development and injury response, and identify RELN as an important mediator of this function.The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.The hypothesis that destructive mass extinctions enable creative evolutionary radiations (creative destruction) is central to classic concepts of macroevolution1,2. However, the relative impacts of extinction and radiation on the co-occurrence of species have not been directly quantitatively compared across the Phanerozoic eon. Here we apply machine learning to generate a spatial embedding (multidimensional ordination) of the temporal co-occurrence structure of the Phanerozoic fossil record, covering 1,273,254 occurrences in the Paleobiology Database for 171,231 embedded species. This facilitates the simultaneous comparison of macroevolutionary disruptions, using measures independent of secular diversity trends. Among the 5% most significant periods of disruption, we identify the 'big five' mass extinction events2, seven additional mass extinctions, two combined mass extinction-radiation events and 15 mass radiations. In contrast to narratives that emphasize post-extinction radiations1,3, we find that the proportionally most comparable mass radiations and extinctions (such as the Cambrian explosion and the end-Permian mass extinction) are typically decoupled in time, refuting any direct causal relationship between them. Moreover, in addition to extinctions4, evolutionary radiations themselves cause evolutionary decay (modelled co-occurrence probability and shared fraction of species between times approaching zero), a concept that we describe as destructive creation. A direct test of the time to over-threshold macroevolutionary decay4 (shared fraction of species between two times ≤ 0.1), counted by the decay clock, reveals saw-toothed fluctuations around a Phanerozoic mean of 18.6 million years. As the Quaternary period began at a below-average decay-clock time of 11 million years, modern extinctions further increase life's decay-clock debt.