Somervillebjerring7050
In this Review, we outline the endogenous properties of EVs that make them natural delivery agents as well as the features that can be improved by bioengineering. We also discuss the therapeutic applications of native and bioengineered EVs to cardiovascular diseases and examine the opportunities and challenges that need to be addressed to advance this research area, with an emphasis on clinical translation.Six known indole alkaloid derivatives have been isolated for the first time from Bacillus thuringiensis and Bacillus velezensis strains, all of them as building blocks for the synthesis of larger natural products. Their structure was elucidated by a complete spectroscopy. Their biological activities were tested against some Gram-positive and Gram-negative bacteria and three phytopathogenic fungi which cause diseases in important crops, such as Moniliophthora roreri, the causal agent of cacao disease. The results indicated that some compounds had modest antibacterial activity; however, some of them had strong antifungal activity against the probed fungi. This antifungal activity of these compounds has not been reported.Flexible electronics can be developed with a low-cost and simple fabrication process while being environmentally friendly. Conductive silver inks have been the most applied material in flexible substrates. This study evaluated the performance of different conductive ink formulations using silver nanoparticles by studying the material properties, the inkjet printing process, and application based on electrical impedance spectroscopy using a buffer solution. Silver nanoparticles synthesis was carried out through chemical reduction of silver nitrate; then, seven conductive ink formulations were produced. Properties such as resistivity, viscosity, surface tension, adhesion, inkjet printability of the inks, and electrical impedance of the printed electrodes were investigated. Curing temperature directly influenced the electrical properties of the inks. The resistivity obtained varied from 3.3 × 100 to 5.6 × 10-06 Ω.cm. Viscosity ranged from 3.7 to 7.4 mPa.s, which is suitable for inkjet printing fabrication. By using a buffer solution as an analyte, the printed electrode pairs presented electrical impedance lower than 200 Ω for all the proposed designs, demonstrating the potential of the formulated inks for utilization in flexible electronic devices for biological sensing applications.The scientific community faces an unexpected and urgent challenge related to the SARS-CoV-2 pandemic and is investigating the role of receptors involved in entry of this virus into cells as well as pathomechanisms leading to a cytokine "storm," which in many cases ends in severe acute respiratory syndrome, fulminant myocarditis and kidney injury. An important question is if it may also damage hematopoietic stem progenitor cells?The formulations of peptide-based antitumour vaccines being tested in clinical studies are generally associated with weak potency. Here, we show that pharmacokinetically tuning the responses of peptide vaccines by fusing the peptide epitopes to carrier proteins optimizes vaccine immunogenicity in mice. In particular, we show in immunized mice that the carrier protein transthyretin simultaneously optimizes three factors efficient antigen uptake in draining lymphatics from the site of injection, protection of antigen payloads from proteolytic degradation and reduction of antigen presentation in uninflamed distal lymphoid organs. Optimizing these factors increases vaccine immunogenicity by up to 90-fold and maximizes the responses to viral antigens, tumour-associated antigens, oncofetal antigens and shared neoantigens. Protein-peptide epitope fusions represent a facile and generalizable strategy for enhancing the T-cell responses elicited by subunit vaccines.Falls and subsequent complications are major contributors to morbidity and mortality, especially in older adults. Here, by taking inspiration from claws and scales found in nature, we show that buckling kirigami structures applied to footwear outsoles generate higher friction forces in the forefoot and transversally to the direction of movement. We identified optimal kirigami designs capable of modulating friction for a range of surfaces, including ice, by evaluating the performance of the dynamic kirigami outsoles through numerical simulations and in vitro friction testing, as well as via human-gait force-plate measurements. Wnt agonist 1 We anticipate that lightweight kirigami metasurfaces applied to footwear outsoles could help mitigate the risk of slips and falls in a range of environments.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Miscanthus sp. biomass could satisfy future biorefinery value chains. However, its use is largely untapped due to high recalcitrance. The termite and its gut microbiome are considered the most efficient lignocellulose degrading system in nature. Here, we investigate at holobiont level the dynamic adaptation of Cortaritermes sp. to imposed Miscanthus diet, with a long-term objective of overcoming lignocellulose recalcitrance. We use an integrative omics approach combined with enzymatic characterisation of carbohydrate active enzymes from termite gut Fibrobacteres and Spirochaetae. Modified gene expression profiles of gut bacteria suggest a shift towards utilisation of cellulose and arabinoxylan, two main components of Miscanthus lignocellulose. Low identity of reconstructed microbial genomes to closely related species supports the hypothesis of a strong phylogenetic relationship between host and its gut microbiome. This study provides a framework for better understanding the complex lignocellulose degradation by the higher termite gut system and paves a road towards its future bioprospecting.The nuclear envelope (NE) continues to the endoplasmic reticulum (ER). Proper partitioning of NE and ER is crucial for cellular activity, but the key factors maintaining the boundary between NE and ER remain to be elucidated. Here we show that the conserved membrane proteins Lem2 and Lnp1 cooperatively play a crucial role in maintaining the NE-ER membrane boundary in fission yeast Schizosaccharomyces pombe. Cells lacking both Lem2 and Lnp1 caused severe growth defects associated with aberrant expansion of the NE/ER membranes, abnormal leakage of nuclear proteins, and abnormal formation of vacuolar-like structures in the nucleus. Overexpression of the ER membrane protein Apq12 rescued the growth defect associated with membrane disorder caused by the loss of Lem2 and Lnp1. Genetic analysis showed that Apq12 had overlapping functions with Lnp1. We propose that a membrane protein network with Lem2 and Lnp1 acts as a critical factor to maintain the NE-ER boundary.