Sniderforsyth6964

Z Iurium Wiki

developed between vascular pathology, change in retinal thickness, neuronal dysfunction, and radiation dose. Radiation-induced ischemia seems to be a primary early manifestation of radiation retinopathy preceding visual loss.

To test the effect of different sodium channel blockers on the electrical activity of corneal nociceptors in intact and surgically injured corneas.

In anesthetized guinea pigs, a 4-mm diameter corneal flap was performed in one eye at a midstromal depth using a custom-made microkeratome. At different times after surgery (3 hours to 15 days), the electrical activity of corneal nociceptor fibers was recorded from ciliary nerve filaments in the superfused eye in vitro. Mechanical threshold was measured using calibrated von Frey hairs; chemical stimulation was performed applying 30-second CO2 gas pulses. The characteristics of the spontaneous and stimulus-evoked activity of corneal nociceptors recorded from intact and lesioned corneas, before and after treatment with the sodium channel blockers lidocaine, carbamazepine, and amitriptyline, were compared.

No spontaneous or stimulus-evoked impulse activity was detected inside the flap at any of the studied time points. However, both were recorded from mechanonoia often accompanying surgical corneal lesions, as occurs after photorefractive surgery.

In order to clarify the role of the optic nerve (ON) as a load on ocular rotation, we developed a finite element model (FEM) of incremental adduction induced by active contractility of extraocular muscles (EOMs), with and without tethering by the ON.

Three-dimensional (3-D) horizontal rectus EOM geometries were obtained from magnetic resonance imaging of five healthy adults, and measured constitutive tissue properties were used. Active and passive strain energies of EOMs were defined using ABAQUS (Dassault Systemes) software. All deformations were assumed to be caused by EOM twitch activation that rotated the eye about a fixed center. The medial rectus (MR) muscle was commanded to additionally contract starting from 26 degrees adducted position, and the lateral rectus (LR) to relax, further adducting the eye either with or without loading by the ON. Tridimensional heat maps were generated to represent the stress and strain distributions.

Tensions in the EOMs were physiologically plausible during incremental adduction. Force in the MR increased from 10 gm at 26 degrees adduction to approximately 28 gm at 32 degrees adduction. Under identical MR contraction, adduction with ON loading reached 32 degrees but 36 degrees without it. selleck Maximum and minimum principal strains within the MR were 16% and 22%, respectively, but when ON loading was included, resulting stress and strain were concentrated at the optic disc.

This physiologically plausible method of simulating EOM activation can provide realistic input to model biomechanical behavior of active and passive tissues in the orbit to clarify biomechanical consequences of ON traction during adduction.

This physiologically plausible method of simulating EOM activation can provide realistic input to model biomechanical behavior of active and passive tissues in the orbit to clarify biomechanical consequences of ON traction during adduction.Human vision is heterogeneous around the visual field. At a fixed eccentricity, performance is better along the horizontal than the vertical meridian and along the lower than the upper vertical meridian. These asymmetric patterns, termed performance fields, have been found in numerous visual tasks, including those mediated by contrast sensitivity and spatial resolution. However, it is unknown whether spatial resolution asymmetries are confined to the cardinal meridians or whether and how far they extend into the upper and lower hemifields. Here, we measured visual acuity at isoeccentric peripheral locations (10 deg eccentricity), every 15° of polar angle. On each trial, observers judged the orientation (± 45°) of one of four equidistant, suprathreshold grating stimuli varying in spatial frequency (SF). On each block, we measured performance as a function of stimulus SF at 4 of 24 isoeccentric locations. We estimated the 75%-correct SF threshold, SF cutoff point (i.e., chance-level), and slope of the psychometric function for each location. We found higher SF estimates (i.e., better acuity) for the horizontal than the vertical meridian and for the lower than the upper vertical meridian. These asymmetries were most pronounced at the cardinal meridians and decreased gradually as the angular distance from the vertical meridian increased. This gradual change in acuity with polar angle reflected a shift of the psychometric function without changes in slope. The same pattern was found under binocular and monocular viewing conditions. These findings advance our understanding of visual processing around the visual field and help constrain models of visual perception.Peripheral vision comprises most of our visual field, and is essential in guiding visual behavior. Its characteristic capabilities and limitations, which distinguish it from foveal vision, have been explained by the most influential theory of peripheral vision as the product of representing the visual input using summary statistics. Despite its success, this account may provide a limited understanding of peripheral vision, because it neglects processes of perceptual grouping and segmentation. To test this hypothesis, we studied how contextual modulation, namely the modulation of the perception of a stimulus by its surrounds, interacts with segmentation in human peripheral vision. We used naturalistic textures, which are directly related to summary-statistics representations. We show that segmentation cues affect contextual modulation, and that this is not captured by our implementation of the summary-statistics model. We then characterize the effects of different texture statistics on contextual modulation, providing guidance for extending the model, as well as for probing neural mechanisms of peripheral vision.Covering 2010 to 2020Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology.

Autoři článku: Sniderforsyth6964 (Johnson Chapman)