Sloannicolajsen9983
Pediculosis is a prevalent ectoparasite infestation caused by lice. The head louse (Pediculus humanus capitis) and body louse (Pediculus humanus humanus) are obligatory parasites whose only known hosts are humans. Pediculosis is probably the most common ectoparasitic infestation, affecting up to 80% of the population in several countries, and particularly prevalent in the infant population worldwide. Several treatment options, including shampoos and creams containing insecticides, have been introduced for the treatment of pediculosis. Recently, the use of synthetic chemicals to control human lice has raised concerns pertaining to human health and the environment. Therefore, increasing efforts have been undertaken to develop effective pediculicides with low environmental toxicity and minimal environmental residual activity. In this study, we focus on the essential oils derived from 22 plant genera, their constituents, and the major factors that play important roles in the effectiveness of these oils in the treatment of pediculosis. Furthermore, we discuss the advantages and limitations of the mentioned essential oils, and ultimately suggest those demonstrating the most effective in vitro pediculicidal activities. The genera such as Aloysia, Cinnamomum, Eucalyptus, Eugenia, Lavandula, Melaleuca, Mentha, Myrcianthes, Origanum, Pimpinella, and Thymus appear to be more efficient against lice. GS4997 These genera are rich in anethole, 1,8-cineole, cinnamaldehyde, p-cymene, eugenol, linalool, limonene, pulegone, terpinen-4-ol, and thymol compounds. Georg Thieme Verlag KG Stuttgart · New York.Menispermum dauricum is widely used to treat respiratory inflammation, including laryngopharyngitis, tonsillitis, tracheitis, and bronchitis. Total alkaloids isolated from M. dauricum have shown a variety of beneficial bioactivities. However, available data on the effects of M. dauricum total alkaloids against allergic asthma has not been reported. In present study, the protective effect of M. dauricum total alkaloids was evaluated by using an ovalbumin-induced in vivo model of asthma. The asthma model was prepared by sensitizing and challenging mice with ovalbumin, and M. dauricum total alkaloids (100, 200, and 400 mg/kg) were administrated to asthmatic mice by gavage. Histopathological analysis of pulmonary changes was detected by hematoxylin and eosin, and periodic acid-schiff staining. Inflammatory cell counts were determined in bronchoalveolar lavage fluid. Total immunoglobulin E and ovalbumin-specific immunoglobulin E levels in serum, and T-helper 2 cytokines and chemokine levels in bronchoalveolar lavage fluid were detected by an ELISA. Histological results demonstrated that M. dauricum total alkaloids significantly attenuated pulmonary inflammation in asthmatic mice. M. dauricum total alkaloid treatment exhibited marked effects on asthmatic mice in reducing inflammatory cell counts, decreasing interleukin-4, interleukin-5, and interleukin-13 concentrations, and downregulating TNF-α and eotaxin levels in bronchoalveolar lavage fluid. In addition, M. dauricum total alkaloids could also inhibit the elevated serum levels of total immunoglobulin E and ovalbumin-specific immunoglobulin E. These findings confirmed that M. dauricum total alkaloids could suppress airway inflammation in ovalbumin-induced asthma through regulating the T-helper 2 response and chemokine level. M. dauricum total alkaloids may be a potential ethnopharmacological agent for asthmatic patients. Georg Thieme Verlag KG Stuttgart · New York.Obacunone is one of the major bioactive constituents from Dictamni cortex, a traditional Chinese medicine widely used in China. Oral administration of obacunone or Dictamni cortex extract has been shown to cause liver injury in rats. Given that obacunone contains a furan ring, which is a structural alert, metabolic activation might be responsible for obacunone-induced liver injury. In this study, bioactivation pathways of obacunone in rat and human liver microsomes were investigated. Obacunone was first metabolized into cis-butene-1,4-dial, and then cis-butene-1,4-dial was captured by glutathione, N-acetyl-cysteine, and N-acetyl-lysine in the microsomal incubation system. A total of 13 adducts derived from the reaction of cis-butene-1,4-dial with glutathione and/or N-acetyl-lysine were detected and structurally identified by liquid chromatography coupled to high-resolution tandem mass spectrometry. The major metabolite (M7) was identified to be the cyclic mono-glutathione conjugate of cis-butene-1,4-dial, which was detected in bile and urine of obacunone-treated rats. M9 and M10, obacunone-derived glutathione-cis-butene-1,4-dial-NAL conjugates, were detected in the microsomal incubations of obacunone fortified with glutathione and N-acetyl-lysine as trapping agents. M3 and M4, pyrroline-2-one derivatives, were also detected in microsomal incubations. Further phenotyping studies indicated that ketoconazole showed a strong inhibitory effect on the production of cis-butene-1,4-dial in a concentration-dependent manner. CYP3A4 was demonstrated to be the primary enzyme responsible for the bioactivation of obacunone by using individual recombinant human CYP450 enzymes. The current study provides an overview of CYP450-dominated bioactivation of obacunone and contributes to the understanding of the role of bioactivation in obacunone-induced liver injury. Georg Thieme Verlag KG Stuttgart · New York.Mint flavorings are widely used in confections, beverages, and dairy products. For the first time, mint flavoring composition of mint candies and food supplements (n = 45), originating from 16 countries, as well as their antibacterial properties, was analyzed. The flavorings were isolated by Marcusson's type micro-apparatus and analyzed by GC-MS. The total content of the mint flavoring hydrodistilled extracts was in the range of 0.01 - 0.9%. The most abundant compounds identified in the extracts were limonene, 1,8-cineole, menthone, menthofuran, isomenthone, menthol and its isomers, menthyl acetate. The antimicrobial activity of 13 reference substances and 10 selected mint flavoring hydrodistilled extracts was tested on Escherichia coli and Staphylococcus aureus by broth dilution method. Linalool acetate and (-)-carvone, as most active against both bacteria, had the lowest MIC90 values. (+)-Menthyl acetate, (-)-menthyl acetate, and limonene showed no antimicrobial activity. Three of the tested extracts had antimicrobial activity against E.