Shorehoffman0254
Resistance to chemotherapy still remains a major challenge in the clinic, impairing the quality of life and survival rate of patients. The identification of unconventional chemosensitizing agents is therefore an interesting aspect of cancer research. Resveratrol has emerged in the last decades as a fascinating molecule, able to modulate several cancer-related molecular mechanisms, suggesting a possible application as an adjuvant in cancer management. This review goes deep into the existing literature concerning the possible chemosensitizing effect of resveratrol associated with the most conventional chemotherapeutic drugs. Despite the promising effects observed in different cancer types in in vitro studies, the clinical translation still presents strong limitations due to the low bioavailability of resveratrol. Recently, efforts have been moved in the field of drug delivery to identifying possible strategies/formulations useful for a more effective administration. Despite the necessity of a huge implementation in this research area, resveratrol appears as a promising molecule able to sensitize resistant tumors to drugs, suggesting its potential use in therapy-refractory cancer patients.By linking stock returns with weather conditions from 2007 to 2019 in China, we study how firm-level stock returns react to extreme temperatures. Based on a multivariate ordinary least squares regression model with fixed effects, empirical results show that firm-level stock returns decrease with exposure to extreme temperatures. We further explore the heterogeneity in the temperature-return relation to enrich our understanding of the economic mechanism behind it. The impact of extreme temperatures on abnormal stock returns is more pronounced in smaller, younger, more volatile, less profitable firms and firms with more intangible assets. The results indicate that the investor mood likely plays a role in the extreme temperature effect. The impact of extreme temperatures holds after addressing a series of concerns. see more Overall, our paper provides additional firm-level evidence on the environment-induced mood effect in the stock market.Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disease. The hypothesis that alterations in the microbiome are involved in the genesis of PCOS has been postulated. Aim of this review is to summarize the available literature data about the relationship between microbiome and PCOS. A search on PubMed and Medline databases was performed from inception to November 20Most of evidence has focused on the connection of intestinal bacteria with sex hormones and insulin-resistance while in the first case, a relationship with hyperandrogenism has been described, although it is still unclear, in the second one, chronic low-grade inflammation by activating the immune system, with increased production of proinflammatory cytokines which interfere with insulin receptor function, causing IR (Insulin Resistance)/hyperinsulinemia has been described, as well as the role of gastrointestinal hormones like Ghrelin and peptide YY (PYY), bile acids, interleukin-22 and Bacteroides vulgatus have been highlighted. The lower genital tract microbiome would be affected by changes in PCOS patients too. The therapeutic opportunities include probiotic, prebiotics and synbiotics, as well as fecal microbiota transplantation and the use of IL-22, to date only in animal models, as a possible future drug. Current evidence has shown the involvement of the gut microbiome in PCOS, seen how humanized mice receiving a fecal transplant from women with PCOS develop ovarian dysfunction, immune changes and insulin resistance and how it is capable of disrupting the secondary bile acid biosynthesis. A future therapeutic approach for PCOS may involve the human administration of IL-22 and bile acid glycodeoxycholic acid.Cyclodextrins (CDs) are a series of cyclic oligosaccharides formed by amylose under the action of CD glucosyltransferase that is produced by Bacillus. After being modified by polymerization, substitution and grafting, high molecular weight cyclodextrin polymers (pCDs) containing multiple CD units can be obtained. pCDs retain the internal hydrophobic-external hydrophilic cavity structure characteristic of CDs, while also possessing the stability of polymer. They are a class of functional polymer materials with strong development potential and have been applied in many fields. This review introduces the research progress of pCDs, including the synthesis of pCDs and their applications in analytical separation science, materials science, and biomedicine.This work aimed to investigate and compare the in vitro antioxidant and anti-inflammatory effects of Salvia officinalis L. (sage) from Italy, with the aim of raising its current knowledge in this field. Leaves and flowers (S1-S8), harvested in two areas of Southern Italy, were extracted with methanol as a solvent by maceration or ultrasound-assisted extraction. Sage extracts, analysed by high pressure liquid chromatography-diode-array detection-electrospray ionization-quadrupole-mass spectroscopy (HPLC-DAD-ESI-Q-MS), exerted a promising antioxidant activity investigated using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and β-carotene bleaching tests, and elicited a significant decrease in reactive oxygen species (ROS) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. The anti-inflammatory activity was analysed in the same in vitro model. All the extracts did not affect cell viability although they showed anti-inflammatory activity, as they induced a decrease in nitrite levels that was greater than 50%, when employed at 50 µg/mL. Furthermore, they elicited a decrease in nitrite levels, as well as a decline in pro-inflammatory cytokine expression. The NF-κB transcription factor proved to be involved in the mechanisms that underlie such effects. Interestingly, sage extracts were able to interfere with the inflammatory activity induced by breast cancer cell-conditioned media (nitrite levels were significantly decreased, p less then 0.05; p less then 0.01), highlighting for the first time the important role of S. officinalis in controlling inflammation processes related to neoplastic progression.