Shepherdlyng9830
The accumulation of persistent plastic waste in the environment is widely recognized as an ecological crisis. New chemical technologies are necessary both to recycle existing plastic waste streams into high-value chemical feedstocks and to develop next-generation materials that are degradable by design. Here, we report a catalytic methodology for the depolymerization of a commercial phenoxy resin and high molecular weight hydroxylated polyolefin derivatives upon visible light irradiation near ambient temperature. Proton-coupled electron transfer (PCET) activation of hydroxyl groups periodically spaced along the polymer backbone furnishes reactive alkoxy radicals that promote chain fragmentation through C-C bond β-scission. The depolymerization produces well-defined and isolable product mixtures that are readily diversified to polycondensation monomers. In addition to controlling depolymerization, the hydroxyl group modulates the thermomechanical properties of these polyolefin derivatives, yielding materials with diverse properties. These results demonstrate a new approach to polymer recycling based on light-driven C-C bond cleavage that has the potential to establish new links within a circular polymer economy and influence the development of new degradable-by-design polyolefin materials.Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution. In this work, we benchmarked the ability of standard solid-state NMR techniques to resolve the effects of binding to dissimilar silica materials on a model protein. In particular, the interactions between ubiquitin and the surfaces of MCM41, SBA15, and silica formed in situ were tested for their influence on the structure and dynamics of the protein. It is shown that the protein's globular fold in the free state is only slightly perturbed in the three silica materials. Local motions on a residue level that are quenched by immobilization or, conversely, that arise from the process are also detailed. NMR measurements show that these perturbations are unique to each silica material and can serve as reporters of the characteristic surface chemistry.The local coordination structure of metal atoms in single-atom catalysts (SACs) greatly influences their catalytic performance. And for most SACs, single metal atoms were anchored on carbon materials with N or C coordination. However, the rational design of oxygen-containing SACs and analyzing its structure-performance relationship remain challenging. Herein, we used amino-rich compounds to tailor the metatungstate and fix the W atoms and finally obtained the oxygen-containing W-SACs. The structural evolution of tungsten and its coordination atoms were tracked by electrospray ionization high-definition mass spectrometry. Furthermore, aberration-corrected transmission electron microscopy, X-ray absorption fine-structure spectroscopy, and first-principles calculation results revealed that different from the traditional SACs, the WO2N2 moiety (W coordinated with two O atoms and two N atoms) may be the favored structure for W species. This special structure promoted the energy transfer for enhancing singlet oxygen generation. This work presents an efficient way to prepare more high-efficiency SACs by atomic-scale tailoring and structural evolution tracking at the molecular level.Hydrophilic polymer particles with a hollow structure have potential applications such as carriers for hydrophilic drugs. However, there are few reports on preparation and morphology control of such particles via a simple method. Ki16425 solubility dmso In this study, hollow hydrophilic polymer particles were prepared by inverse suspension polymerization for water droplets containing 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) anions, 1-vinylimidazole (VIm) cations, oligo(ethylene glycol) diacrylate (OEGDA), dextran, and an initiator via the self-assembling phase-separated polymer (SaPSeP) method developed in our lab. The inner morphology of the particle could be controlled (as single- or multi-hollow structures) by changing the concentrations of the OEGDA and the dextran. The obtained hollow particles could encapsulate a hydrophilic fluorescent substance in their hollow region when the substance was added to the primary droplets before polymerization. In addition, the poly(AMPS-co-VIm-co-OEGDA) shell of the particles exhibited an ionic cross-linked structure, which could be stimulated by salt. The poly(AMPS-co-VIm-co-OEGDA) hollow particles with the encapsulated substance released the substance when salt was added to the dispersion. These results indicated that the applicability of the SaPSeP method can be broadened for morphology control of the hydrophilic polymer particles encapsulating water-soluble materials.Glycopolymer-based drugs for immunotherapy have attracted increasing attention because the affinity between glycans and proteins plays an important role in immune responses. Previous studies indicate that the polymer chain length influences the affinity. In the studies on enhancing the immune response by glycans, it is found that both oligosaccharides and long-chain glycopolymers work well. However, there is a lack of systematic studies on the immune enhancement effect and the binding ability of oligomers and polymers to immune-related proteins. In this paper, to study the influence of the chain length, glycopolymers based on N-acetylglucosamine with different chain lengths were synthesized, and their interaction with immune-related proteins and their effect on dendritic cell maturation were evaluated. It was proved that compared with l-glycopolymers (degree of polymerization (DP) > 20), s-glycopolymers (DP less then 20) showed better binding ability to the dendritic cell-specific ICAM-3-grabbing nonintegrin protein and the toll-like receptor 4 and myeloid differentiation factor 2 complex protein by quartz crystal microbalance and molecular docking simulation. When the total sugar unit amounts are equal, s-glycopolymers are proved to be superior in promoting dendritic cell maturation by detecting the expression level of CD80 and CD86 on the surface of dendritic cells. Through the combination of experimental characterization and theoretical simulation, a deep look into the interaction between immune-related proteins and glycopolymers with different chain lengths is helpful to improve the understanding of the immune-related interactions and provides a good theoretical basis for the design of new glycopolymer-based immune drugs.Acute kidney injury (AKI) is common in advanced cirrhosis. Prerenal azotemia, hepatorenal syndrome, and acute tubular necrosis are the main causes of AKI in patients with cirrhosis. Evaluation of renal function and differentiation between functional and structural kidney injury are important issues in the management of cirrhosis. However, AKI in cirrhosis exists as a complex clinical spectrum rather than concrete clinical entity. Based on current evidence, changes in serum creatinine (Cr) levels remain the most appropriate standard for defining AKI in cirrhosis. However, serum Cr has a limited role in assessing renal function in this population. This review examines previous studies that investigated the ability of recent biomarkers for AKI in cirrhosis from the perspective of earlier and accurate diagnosis, classification of AKI phenotype, and prediction of clinical outcomes. Serum cystatin C and urine neutrophil gelatinase-associated lipocalin have been extensively studied in cirrhosis, and have facilitated improved diagnosis and prognosis prediction in patients with AKI. In addition, urine N-acetyl-β-D-glucosaminidase, interleukin 18, and kidney injury molecule 1 are other promising biomarkers for advanced cirrhosis. However, the clinical significance of these markers remains unclear because there are no cut-off values defining the normal range and differentiating phenotypes of AKI. In addition, AKI has been defined in terms of serum Cr, and renal biopsy-the gold standard-has not been carried out in most studies. Further discovery of innovate biomarkers and incorporation of various markers could improve the diagnosis and prognosis prediction of AKI, and will translate into meaningful improvements in patient outcomes.
In July 2017, the EmprintTM next-generation microwave ablation system using thermosphere technology (Covidien, Boulder, CO, USA) was approved for use in Japan. This system can produce a predictable spherical ablation zone at higher temperatures than radiofrequency ablation (RFA). The aim of the present study was to elucidate whether this new microwave thermosphere ablation (MTA) could safely improve outcome compared to RFA, which is the standard of care for small hepatocellular carcinoma (HCC).
This retrospective study analyzed 513 patients with 630 HCCs (≤3 cm) who were performed by percutaneous RFA (174 patients, 214 HCCs) or MTA (339 patients, 416 HCCs) between January 2016 and March 2020.
Median ablation time was significantly shorter for MTA (240 s) than for RFA (721 s; p<0.001). A significant difference in 3-year local tumor progression rate was evident between the RFA group (22%) and MTA group (8%; p<0.001) Multivariate analysis revealed ablation procedure and tumor diameter as independent factors contributing to local tumor progression (MTA, p<0.001, hazard ratio 0.565, 95% confidence interval 0.437-0.731). In patients with primary HCC, a significant difference in overall survival was evident (RFA vs MTA, 3-year, 77% vs 95%, p=0.029). Ablation procedure and Child-Pugh score were independent factors contributing to survival. The total complication rate was significantly lower for MTA (8%) than for RFA (14%, p<0.05), particularly for bile duct injury (3% vs 9%, respectively; p<0.05).
Next-generation MTA for small HCC could provide safer, more curative treatment in a shorter ablation time than RFA.
Next-generation MTA for small HCC could provide safer, more curative treatment in a shorter ablation time than RFA.Isolated systolic hypertension in the young (ISHY) remains a challenging problem, partly due to the differences in central aortic pressure observed in studies investigating ISHY. The fundamental relationship between heart rate and central aortic pressure, and more precisely, the relationship between heart rate and amplification of central aortic pressure in the periphery, underpins the assessment and, as a consequence, the treatment of ISHY. Physiology warrants that an increase in heart rate would lead to increased amplification of the pressure pulse between the aorta and the brachial artery. Heart rate generally decreases with age, in particular over the first two decades of life. Thus, a higher heart rate in the young would result in higher pulse pressure amplification, and therefore an elevated brachial systolic pressure would not necessarily translate to elevated aortic systolic pressure. However, elevated heart rate is not a consistent feature in ISHY, and studies have shown that ISHY can present with either high or low central aortic systolic pressure.