Samuelsenlutz9948

Z Iurium Wiki

The toxicity of aluminum (Al) in acidic soil limits global crop yield. The ATP-binding cassette (ABC) transporter-like gene superfamily has functions and structures related to transportation, so it responds to aluminum stress in plants. In this study, one half-size ABC transporter gene was isolated from wild soybeans (Glycine soja) and designated GsABCI1. By real-time qPCR, GsABCI1 was identified as not specifically expressed in tissues. Phenotype identification of the overexpressed transgenic lines showed increased tolerance to aluminum. Furthermore, GsABCI1 transgenic plants exhibited some resistance to aluminum treatment by ion translocation or changing root components. This work on the GsABCI1 identified the molecular function, which provided useful information for understanding the gene function of the ABC family and the development of new aluminum-tolerant soybean germplasm.The review is devoted to the analysis of literature data related to the role of proteomic studies in the study of atherosclerotic cardiovascular diseases. Diagnosis of patients with atherosclerotic plaques before clinical manifestations is an arduous task. The review presents the results of research on the new proteomic potential biomarkers of coronary heart disease, coronary atherosclerosis, acute coronary syndrome, myocardial infarction, carotid artery atherosclerosis. Also, the analysis of literature data on proteomic studies of the vascular wall was carried out. To assess the involvement of proteins in the pathological process of atherosclerosis, it is important to investigate the specific relationships between proteins in the arteries, expression and concentration of proteins. The development of proteomic technologies has made it possible to analyse the number of proteins associated with the development of the disease. Analysis of the proteomic profile of the vascular wall in atherosclerosis can help to detect possible diagnostically significant protein structures or potential biomarkers of the disease and develop novel approaches to the diagnosis of atherosclerosis and its complications.VAPB (Vesicle-Associated-membrane Protein-associated protein B) is a tail-anchored membrane protein of the endoplasmic reticulum that can also be detected at the inner nuclear membrane. As a component of many contact sites between the endoplasmic reticulum and other organelles, VAPB is engaged in multiple protein interactions with a plethora of binding partners. A mutant version of VAPB, P56S-VAPB, which results from a single point mutation, is involved in a familial form of amyotrophic lateral sclerosis (ALS8). We performed RAPIDS (rapamycin- and APEX-dependent identification of proteins by SILAC) to identify proteins that interact with or are in close proximity to P56S-VAPB. The mutation abrogates the interaction of VAPB with many known binding partners. Here, we identify Sequestosome 1 (SQSTM1), a well-known autophagic adapter protein, as a major interaction/proximity partner of P56S-VAPB. Remarkably, not only the mutant protein, but also wild-type VAPB interacts with SQSTM1, as shown by proximity ligation assays and co-immunoprecipiation experiments.The dextro-transposition of the great arteries (d-TGA) is one of the most common congenital heart diseases. To identify biological processes that could be related to the development of d-TGA, we established induced pluripotent stem cell (iPSC) lines from two patients with d-TGA and from two healthy subjects (as controls) and differentiated them into endothelial cells (iPSC-ECs). iPSC-EC transcriptome profiling and bioinformatics analysis revealed differences in the expression level of genes involved in circulatory system and animal organ development. iPSC-ECs from patients with d-TGA showed impaired ability to develop tubular structures in an in vitro capillary-like tube formation assay, and interactome studies revealed downregulation of biological processes related to Notch signaling, circulatory system development and angiogenesis, pointing to alterations in vascular structure development. Our study provides an iPSC-based cellular model to investigate the etiology of d-TGA.Traumatic injury of the oral cavity is atypical and often accompanied by uncontrolled bleeding and inflammation. Injectable hydrogels have been considered to be promising candidates for the treatment of oral injuries because of their simple formulation, minimally invasive application technique, and site-specific delivery. Fibrinogen-based hydrogels have been widely explored as effective materials for wound healing in tissue engineering due to their uniqueness. Recently, an injectable foam has taken the spotlight. However, the fibrin component of this biomaterial is relatively stiff. To address these challenges, we created keratin-conjugated fibrinogen (KRT-FIB). This study aimed to develop a novel keratin biomaterial and assess cell-biomaterial interactions. Consequently, a novel injectable KRT-FIB hydrogel was optimized through rheological measurements, and its injection performance, swelling behavior, and surface morphology were investigated. We observed an excellent cell viability, proliferation, and migration/cell-cell interaction, indicating that the novel KRT-FIB-injectable hydrogel is a promising platform for oral tissue regeneration with a high clinical applicability.Plant-originated triterpenes are important insecticidal molecules. The research on insecticidal activity of molecules from Meliaceae plants has always received attention due to the molecules from this family showing a variety of insecticidal activities with diverse mechanisms of action. In this paper, we discuss 102 triterpenoid molecules with insecticidal activity of plants of eight genera (Aglaia, Aphanamixis, Azadirachta, Cabralea, Carapa, Cedrela, Chisocheton, and Chukrasia) in Meliaceae. In total, 19 insecticidal plant species are presented. Among these species, Azadirachta indica A. Juss is the most well-known insecticidal plant and azadirachtin is the active molecule most widely recognized and highly effective botanical insecticide. However, it is noteworthy that six species from Cedrela were reported to show insecticidal activity and deserve future study. In this paper, a total of 102 insecticidal molecules are summarized, including 96 nortriterpenes, 4 tetracyclic triterpenes, and 2 pentacyclic triterpenes. Results showed antifeedant activity, growth inhibition activity, poisonous activity, or other activities. Among them, 43 molecules from 15 plant species showed antifeedant activity against 16 insect species, 49 molecules from 14 plant species exhibited poisonous activity on 10 insect species, and 19 molecules from 11 plant species possessed growth regulatory activity on 12 insect species. Among these molecules, azadirachtins were found to be the most successful botanical insecticides. Still, other molecules possessed more than one type of obvious activity, including 7-deacetylgedunin, salannin, gedunin, azadirone, salannol, azadiradione, and methyl angolensate. Most of these molecules are only in the primary stage of study activity; their mechanism of action and structure-activity relationship warrant further study.Cell-derived matrix (CDM) has proven its therapeutic potential and been utilized as a promising resource in tissue regeneration. In this study, we prepared a human fibroblast-derived matrix (FDM) by decellularization of in vitro cultured cells and transformed the FDM into a nano-sized suspended formulation (sFDM) using ultrasonication. The sFDM was then homogeneously mixed with Pluronic F127 and hyaluronic acid (HA), to effectively administer sFDM into target sites. Both sFDM and sFDM containing hydrogel (PH/sFDM) were characterized via immunofluorescence, sol-gel transition, rheological analysis, and biochemical factors array. We found that PH/sFDM hydrogel has biocompatible, mechanically stable, injectable properties and can be easily administered into the external and internal target regions. sFDM itself holds diverse bioactive molecules. Interestingly, sFDM-containing serum-free media helped maintain the metabolic activity of endothelial cells significantly better than those in serum-free condition. PH/sFDM also promoted vascular endothelial growth factor (VEGF) secretion from monocytes in vitro. Moreover, when we evaluated therapeutic effects of PH/sFDM via the murine full-thickness skin wound model, regenerative potential of PH/sFDM was supported by epidermal thickness, significantly more neovessel formation, and enhanced mature collagen deposition. The hindlimb ischemia model also found some therapeutic improvements, as assessed by accelerated blood reperfusion and substantially diminished necrosis and fibrosis in the gastrocnemius and tibialis muscles. Together, based on sFDM holding a strong therapeutic potential, our engineered hydrogel (PH/sFDM) should be a promising candidate in tissue engineering and regenerative medicine.Metal ions such as cobalt (II) and chromium (III) might be present in the oral cavity, as a consequence of the corrosion of Co-Cr dental alloys. The diffusion of such metal ions into the organism, carried by saliva, can cause health problems as a consequence of their toxicity, enhanced by a cumulative effect in the body. The effect of the chlorhexidine digluconate, which is commonly used in mouthwash formulations, on the transport of these salts is evaluated in this paper by using the Taylor dispersion technique, which will allow an assessment of how the presence of chlorhexidine digluconate (either in aqueous solution or in a commercial formulation) may affect the diffusion of metal ions. The ternary mutual diffusion coefficients of metal ions (Co and Cr) in the presence of chlorhexidine digluconate, in an artificial saliva media, were measured. Significant coupled diffusion of CoCl2 (and CrCl3) and chlorhexidine digluconate is observed by analysis of the non-zero values of the cross-diffusion coefficients, D12 and D21. The observed interactions between metal ions and chlorhexidine digluconate suggest that the latter might be considered as an advantageous therapeutic agent, once they contribute to the reduction of the concentration of those ions inside the mouth.The global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides. Interestingly, AMPs also accomplish important biological functions other than antifungal activity, including anti-mycotoxin biosynthesis activity, which opens novel aspects for their future use in agriculture and food industry to fight mycotoxin contamination. AMPs can reach intracellular targets and exert their activity by mechanisms other than membrane permeabilization. The mechanisms through which AMPs affect mycotoxin production are varied and complex, ranging from oxidative stress to specific inhibition of enzymatic components of mycotoxin biosynthetic pathways. This review presents natural and synthetic antifungal AMPs from different origins which are effective against mycotoxin-producing fungi, and aims at summarizing current knowledge concerning their additional effects on mycotoxin biosynthesis. Antifungal AMPs properties and mechanisms of action are also discussed.Prostate cancer is a leading cause of cancer-associated deaths in men over 60 years of age. Most patients are killed by tumor metastasis. Recent evidence has implicated a role of the tumor microenvironment and urokinase plasminogen activator (uPA) in cancer cell migration, invasion, and metastasis. Here, we examine the role of the Na+/H+ exchanger isoform 1 (NHE1) and uPA in DU 145 prostate cancer cell migration and colony formation. Knockout of NHE1 reduced cell migration. The effects of a series of novel NHE1/uPA hexamethylene-amiloride-based inhibitors with varying efficacy towards NHE1 and uPA were examined on prostate cancer cells. Inhibition of NHE1-alone, or with inhibitors combining NHE1 or uPA inhibition-generally did not prevent prostate cancer cell migration. However, uPA inhibition-but not NHE1 inhibition-prevented anchorage-dependent colony formation. Application of inhibitors at concentrations that only saturate uPA inhibition decreased tumor invasion in vivo. The results suggest that while knockout of NHE1 affects cell migration, these effects are not due to NHE1-dependent proton translocation. Additionally, while neither NHE1 nor uPA activity was critical in cell migration, only uPA activity appeared to be critical in anchorage-dependent colony formation of DU 145 prostate cancer cells and invasion in vivo.Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer's disease (AD). Changes in the dynamics of receptors on the plasma membrane are essential to receptor function. However, whether receptor dynamics are affected in different pathophysiological conditions is unexplored. Using live-cell single-molecule imaging, we examined the surface trafficking of TrkA and p75NTR molecules on live neurons that were derived from human-induced pluripotent stem cells (hiPSCs) of presenilin 1 (PSEN1) mutant familial AD (fAD) patients and non-demented control subjects. Our results show that the surface movement of TrkA and p75NTR and the activation of TrkA- and p75NTR-related phosphoinositide-3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signaling pathways are altered in neurons that are derived from patients suffering from fAD compared to controls. These results provide evidence for altered surface movement of receptors in AD and highlight the importance of investigating receptor dynamics in disease conditions. Uncovering these mechanisms might enable novel therapies for AD.Alpha-1 antitrypsin deficiency (AATD) is caused by a single mutation in the SERPINA1 gene, which culminates in the accumulation of misfolded alpha-1 antitrypsin (ZAAT) within the endoplasmic reticulum (ER) of hepatocytes. AATD is associated with liver disease resulting from hepatocyte injury due to ZAAT-mediated toxic gain-of-function and ER stress. There is evidence of mitochondrial damage in AATD-mediated liver disease; however, the mechanism by which hepatocyte retention of aggregated ZAAT leads to mitochondrial injury is unknown. Previous studies have shown that ER stress is associated with both high concentrations of fatty acids and mitochondrial dysfunction in hepatocytes. Using a human AAT transgenic mouse model and hepatocyte cell lines, we show abnormal mitochondrial morphology and function, and dysregulated lipid metabolism, which are associated with hepatic expression and accumulation of ZAAT. We also describe a novel mechanism of ZAAT-mediated mitochondrial dysfunction. We provide evidence that misfolded ZAAT translocates to the mitochondria for degradation. Furthermore, inhibition of ZAAT expression restores the mitochondrial function in ZAAT-expressing hepatocytes. Altogether, our results show that ZAAT aggregation in hepatocytes leads to mitochondrial dysfunction. Our findings suggest a plausible model for AATD liver injury and the possibility of mechanism-based therapeutic interventions for AATD liver disease.Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are laborious and time-consuming. The computational techniques in drug design have been improved with a new generation of software used to develop and optimize active compounds that can be used in future chemotherapeutic development to combat global tuberculosis resistance. This review provides an overview of the evolution of tuberculosis resistance, existing drug management, and the design of new anti-tuberculosis drugs developed based on the contributions of computational techniques. Also, we show an appraisal of available software and databases on computational drug design with an insight into the application of this software and databases in the development of anti-tubercular drugs. The review features a perspective involving machine learning, artificial intelligence, quantum computing, and CRISPR combination with available computational techniques as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.The brain insulin metabolism alteration has been addressed as a pathophysiological factor underlying Alzheimer's disease (AD). Insulin can be beneficial in AD, but its macro-polypeptide nature negatively influences the chances of reaching the brain. The intranasal (IN) administration of therapeutics in AD suggests improved brain-targeting. Solid lipid nanoparticles (SLNs) and poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are promising carriers to deliver the IN-administered insulin to the brain due to the enhancement of the drug permeability, which can even be improved by chitosan-coating. In the present study, uncoated and chitosan-coated insulin-loaded SLNs and PLGA NPs were formulated and characterized. The obtained NPs showed desirable physicochemical properties supporting IN applicability. The in vitro investigations revealed increased mucoadhesion, nasal diffusion, and drug release rate of both insulin-loaded nanocarriers over native insulin with the superiority of chitosan-coated SLNs. Cell-line studies on human nasal epithelial and brain endothelial cells proved the safety IN applicability of nanoparticles. Insulin-loaded nanoparticles showed improved insulin permeability through the nasal mucosa, which was promoted by chitosan-coating. However, native insulin exceeded the blood-brain barrier (BBB) permeation compared with nanoparticulate formulations. Encapsulating insulin into chitosan-coated NPs can be beneficial for ensuring structural stability, enhancing nasal absorption, followed by sustained drug release.The aim of our investigation was to make a comparative assessment of the biological effects of silver nanoparticles encapsulated in a natural and synthetic polymer matrix. We carried out a comparative assessment of the biological effect of silver nanocomposites on natural (arabinogalactan) and synthetic (poly-1-vinyl-1,2,4-triazole) matrices. We used 144 three-month-old white outbred male rats, which were divided into six groups. Substances were administered orally for 9 days at a dose 500 μg/kg. Twelve rats from each group were withdrawn from the experiment immediately after nine days of exposure (early period), and the remaining 12 rats were withdrawn from the experiment 6 months after the end of the nine-day exposure (long-term period). We investigated the parietal-temporal area of the cerebral cortex using histological (morphological assessments of nervous tissue), electron microscopic (calculation of mitochondrial areas and assessment of the quality of the cell nucleus), and immunohistochemical methods (study of the expression of proteins regulating apoptosis bcl-2 and caspase 3). We found that the effect of the nanocomposite on the arabinogalactan matrix causes a disturbance in the nervous tissue structure, an increase in the area of mitochondria, a disturbance of the structure of nerve cells, and activation of the process of apoptosis.Niemann-Pick type C disease (NPC) is a rare inherited neurodegenerative disorder characterized by an accumulation of intracellular cholesterol within late endosomes and lysosomes due to NPC1 or NPC2 dysfunction. In this work, we tested the hypothesis that retromer impairment may be involved in the pathogenesis of NPC and may contribute to increased amyloidogenic processing of APP and enhanced BACE1-mediated proteolysis observed in NPC disease. Using NPC1-null cells, primary mouse NPC1-deficient neurons and NPC1-deficient mice (BALB/cNctr-Npc1m1N), we show that retromer function is impaired in NPC. This is manifested by altered transport of the retromer core components Vps26, Vps35 and/or retromer receptor sorLA and by retromer accumulation in neuronal processes, such as within axonal swellings. Changes in retromer distribution in NPC1 mouse brains were observed already at the presymptomatic stage (at 4-weeks of age), indicating that the retromer defect occurs early in the course of NPC disease and may contribute to downstream pathological processes. Furthermore, we show that cholesterol depletion in NPC1-null cells and in NPC1 mouse brains reverts retromer dysfunction, suggesting that retromer impairment in NPC is mechanistically dependent on cholesterol accumulation. Thus, we characterized retromer dysfunction in NPC and propose that the rescue of retromer impairment may represent a novel therapeutic approach against NPC.G protein-coupled receptors (GPCRs) have emerged as key players in regulating (patho)physiological processes, including inflammation. Members of the Mas-related G protein coupled receptors (MRGPRs), a subfamily of GPCRs, are largely expressed by sensory neurons and known to modulate itch and pain. Several members of MRGPRs are also expressed in mast cells, macrophages, and in cardiovascular tissue, linking them to pseudo-allergic drug reactions and suggesting a pivotal role in the cardiovascular system. However, involvement of the human Mas-related G-protein coupled receptor D (MRGPRD) in the regulation of the inflammatory mediator interleukin 6 (IL-6) has not been demonstrated to date. By stimulating human MRGPRD-expressing HeLa cells with the agonist β-alanine, we observed a release of IL-6. β-alanine-induced signaling through MRGPRD was investigated further by probing downstream signaling effectors along the Gαq/Phospholipase C (PLC) pathway, which results in an IkB kinases (IKK)-mediated canonical activation of nuclear factor kappa-B (NF-κB) and stimulation of IL-6 release. This IL-6 release could be blocked by a Gαq inhibitor (YM-254890), an IKK complex inhibitor (IKK-16), and partly by a PLC inhibitor (U-73122). Additionally, we investigated the constitutive (ligand-independent) and basal activity of MRGPRD and concluded that the observed basal activity of MRGPRD is dependent on the presence of fetal bovine serum (FBS) in the culture medium. Consequently, the dynamic range for IL-6 detection as an assay for β-alanine-mediated activation of MRGPRD is substantially increased by culturing the cells in FBS free medium before treatment. Overall, the observation that MRGPRD mediates the release of IL-6 in an in vitro system, hints at a role as an inflammatory mediator and supports the notion that IL-6 can be used as a marker for MRGPRD activation in an in vitro drug screening assay.α-Synuclein (αSyn) species can be detected in synaptic boutons, where they play a crucial role in the pathogenesis of Parkinson's Disease (PD). However, the effects of intracellular αSyn species on synaptic transmission have not been thoroughly studied. Here, using patch-clamp recordings in hippocampal neurons, we report that αSyn oligomers (αSynO), intracellularly delivered through the patch electrode, produced a fast and potent effect on synaptic transmission, causing a substantial increase in the frequency, amplitude and transferred charge of spontaneous synaptic currents. We also found an increase in the frequency of miniature synaptic currents, suggesting an effect located at the presynaptic site of the synapsis. Furthermore, our in silico approximation using docking analysis and molecular dynamics simulations showed an interaction between a previously described small anti-amyloid beta (Aβ) molecule, termed M30 (2-octahydroisoquinolin-2(1H)-ylethanamine), with a central hydrophobic region of αSyn. In line with this finding, our empirical data aimed to obtain oligomerization states with thioflavin T (ThT) and Western blot (WB) indicated that M30 interfered with αSyn aggregation and decreased the formation of higher-molecular-weight species. Furthermore, the effect of αSynO on synaptic physiology was also antagonized by M30, resulting in a decrease in the frequency, amplitude, and charge transferred of synaptic currents. Overall, the present results show an excitatory effect of intracellular αSyn low molecular-weight species, not previously described, that are able to affect synaptic transmission, and the potential of a small neuroactive molecule to interfere with the aggregation process and the synaptic effect of αSyn, suggesting that M30 could be a potential therapeutic strategy for synucleinopathies.Psoriasis vulgaris is a common inflammatory skin disease with still unknown pathogenesis. In recent years, genetic and environmental factors have been mentioned as the main causes. Among environmental factors, many researchers are trying to investigate the role of mental health and its importance in the development of many diseases. In the pathophysiology of psoriasis, the role of the interaction between the nervous, endocrine, and immune systems are often emphasized. So far, no one has clearly indicated where the pathological process begins. One of the hypotheses is that chronic stress influences the formation of hormonal changes (lowering the systemic cortisol level), which favors the processes of autoimmunity. In inflammatory skin conditions, mast cells (MCs) are localized close to blood vessels and peripheral nerves, where they probably play an important role in the response to environmental stimuli and emotional stress. They are usually connected with a fast immune response, not only in allergies but also a protective response to microbial antigens. Among many cells of the immune system, MCs have receptors for the hormones of the hypothalamic-pituitary-adrenal (HPA) axis on their surface. In this review, we will try to take a closer look at the role of MCs in the pathophysiology of psoriasis. This knowledge may give the opportunity to search for therapeutic solutions.Due to its tensile strength and excellent biocompatibility, titanium (Ti) is commonly used as an implant material in medicine and dentistry. The success of dental implants depends on the formation of a contact between the oxidized surface of Ti implant and the surrounding bone tissue. The adsorption of proteins and peptides to the implant surface allows the bone-forming osteoblast cells to adhere to such modified surfaces. Recently, it has been observed that tetrapeptide KRSR (Lys-Arg-Ser-Arg) functionalization could promote osteoblast adhesion to implant surfaces. This may facilitate the establishment of an efficient bone-to implant contact and improve implant stability during the healing process. GROMACS, a molecular dynamics software package was used to perform a 200 ns simulation of adsorption of the KRSR peptide to the TiO2 (anatase) surface in an aqueous environment. The molecule conformations were mapped with Replica Exchange Molecular Dynamics (REMD) simulations to assess the possible peptide conformations on the anatase surface, and the umbrella sampling method was used to calculate the binding energy of the most common conformation. The simulations have shown that the KRSR peptide migrates and attaches to the surface in a stable position. The dominant amino acid residue interacting with the TiO2 surface was the N-terminal charged lysine (K) residue. REMD indicated that there is a distinct conformation that is taken by the KRSR peptide. In this conformation the surface interacts only with the lysine residue while the ser (S) and arg (R) residues interact with water molecules farther from the surface. The binding free energy of the most common conformation of KRSR peptide to the anatase (100) surface was ΔG = -8.817 kcal/mol. Our result suggests that the N-terminal lysine residue plays an important role in the adhesion of KRSR to the TiO2 surface and may influence the osseointegration of dental implants.The actin cytoskeleton is crucial for plant morphogenesis, and organization of actin filaments (AF) is dynamically regulated by actin-binding proteins. However, the roles of actin-binding proteins, particularly type II formins, in this process remain poorly understood in plants. Here, we report that a type II formin in rice, Oryza sativa formin homolog 3 (OsFH3), acts as a major player to modulate AF dynamics and contributes to rice morphogenesis. osfh3 mutants were semi-dwarf with reduced size of seeds and unchanged responses to light or gravity compared with mutants of osfh5, another type II formin in rice. osfh3 osfh5 mutants were dwarf with more severe developmental defectiveness. Recombinant OsFH3 could nucleate actin, promote AF bundling, and cap the barbed end of AF to prevent elongation and depolymerization, but in the absence of profilin, OsFH3 could inhibit AF elongation. Different from other reported type II formins, OsFH3 could bind, but not bundle, microtubules directly. Furthermore, its N-terminal phosphatase and tensin homolog domain played a key role in modulating OsFH3 localization at intersections of AF and punctate structures of microtubules, which differed from other reported plant formins. Our results, thus, provide insights into the biological function of type II formins in modulating plant morphology by acting on AF dynamics.AXL, a member of the TAM family, is a promising therapeutic target due to its elevated expression in advanced hepatocellular carcinoma (HCC), particularly in association with acquired drug resistance. Previously, RNA interference was used to study its role in cancer, and several phenotypic changes, including attenuated cell proliferation and decreased migration and invasion, have been reported. The mechanism of action of AXL in HCC is elusive. We first studied the AXL expression in HCC cell lines by real-time PCR and western blot and showed its stringent association with a mesenchymal phenotype. We then explored the role of AXL in mesenchymal SNU475 cells by CRISPR-Cas9 mediated gene knock-out. AXL-depleted HCC cells displayed drastic phenotypic changes, including increased DNA damage response, prolongation of doubling time, G2 arrest, and polyploidization in vitro and loss of tumorigenicity in vivo. Pharmacological inhibition of AXL by R428 recapitulated G2 arrest and polyploidy phenotype. These observations strongly suggest that acute loss of AXL in some mesenchymal HCC cells is lethal and points out that its inhibition may represent a druggable vulnerability in AXL-high HCC patients.Salt stress is one of the major significant restrictions that hamper plant development and agriculture ecosystems worldwide. Novel climate-adapted cultivars and stress tolerance-enhancing molecules are increasingly appreciated to mitigate the detrimental impacts of adverse stressful conditions. Sorghum is a valuable source of food and a potential model for exploring and understanding salt stress dynamics in cereals and for gaining a better understanding of their physiological pathways. Herein, we evaluate the antioxidant scavengers, photosynthetic regulation, and molecular mechanism of ion exclusion transporters in sorghum genotypes under saline conditions. A pot experiment was conducted in two sorghum genotypes viz. SSG 59-3 and PC-5 in a climate-controlled greenhouse under different salt concentrations (60, 80, 100, and 120 mM NaCl). Salinity drastically affected the photosynthetic machinery by reducing the accumulation of chlorophyll pigments and carotenoids. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, GST, DHAR, MDHAR, GSH, ASC, proline, GB), as well as protecting cell membrane integrity (MDA, electrolyte leakage). Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via the concomitant upregulation of SbSOS1, SbSOS2, and SbNHX-2 and SbV-Ppase-II ion transporter genes in sorghum genotypes. Overall, these results suggest that Na+ ions were retained and detoxified, and less stress impact was observed in mature and younger leaves. Based on the above, we deciphered that SSG 59-3 performed better by retaining higher plant water status, photosynthetic assimilates and antioxidant potential, and the upregulation of ion transporter genes and may be utilized in the development of resistant sorghum lines in saline regions.A translationally silent single nucleotide mutation in exon 44 (E44) of the von Willebrand factor (VWF) gene is associated with inefficient removal of intron 44 in a von Willebrand disease (VWD) patient. This intron retention (IR) event was previously attributed to reordered E44 secondary structure that sequesters the normal splice donor site. We propose an alternative mechanism the mutation introduces a cryptic splice donor site that interferes with the function of the annotated site to favor IR. We evaluated both models using minigene splicing reporters engineered to vary in secondary structure and/or cryptic splice site content. Analysis of splicing efficiency in transfected K562 cells suggested that the mutation-generated cryptic splice site in E44 was sufficient to induce substantial IR. Mutations predicted to vary secondary structure at the annotated site also had modest effects on IR and shifted the balance of residual splicing between the cryptic site and annotated site, supporting competition among the sites. Further studies demonstrated that introduction of cryptic splice donor motifs at other positions in E44 did not promote IR, indicating that interference with the annotated site is context dependent. We conclude that mutant deep exon splice sites can interfere with proper splicing by inducing IR.MYB transcription factors of plants play important roles in flavonoid synthesis, aroma regulation, floral organ morphogenesis, and responses to biotic and abiotic stresses. Cymbidium ensifolium is a perennial herbaceous plant belonging to Orchidaceae, with special flower colors and high ornamental value. In this study, a total of 136 CeMYB transcription factors were identified from the genome of C. ensifolium, including 27 1R-MYBs, 102 R2R3-MYBs, 2 3R-MYBs, 2 4R-MYBs, and 3 atypical MYBs. Through phylogenetic analysis in combination with MYB in Arabidopsis thaliana, 20 clusters were obtained, indicating that these CeMYBs may have a variety of biological functions. The 136 CeMYBs were distributed on 18 chromosomes, and the conserved domain analysis showed that they harbored typical amino acid sequence repeats. The motif prediction revealed that multiple conserved elements were mostly located in the N-terminal of CeMYBs, suggesting their functions to be relatively conserved. CeMYBs harbored introns ranging from 0 to 13 and contained a large number of stress- and hormone-responsive cis-acting elements in the promoter regions. The subcellular localization prediction demonstrated that most of CeMYBs were positioned in the nucleus. The analysis of the CeMYBs expression based on transcriptome data showed that CeMYB52, and CeMYB104 of the S6 subfamily may be the key genes leading to flower color variation. The results lay a foundation for the study of MYB transcription factors of C. ensifolium and provide valuable information for further investigations of the potential function of MYB genes in the process of anthocyanin biosynthesis.Opportunistic pathogen Serratia proteamaculans are able to penetrate the eukaryotic cells. The penetration rate can be regulated by bacterial surface protein OmpX. OmpX family proteins are able to bind to host cell surface to the epidermal growth factor receptor (EGFR) and the extracellular matrix protein fibronectin, whose receptors are in return the α5 β1 integrins. Here we elucidated the involvement of these host cell proteins in S. proteamaculans invasion. We have shown that, despite the absence of fibronectin contribution to S. proteamaculans invasion, β1 integrin was directly involved in invasion of M-HeLa cells. Herewith β1 integrin was not the only receptor that determines sensitivity of host cells to bacterial invasion. Signal transfer from EGFR was also involved in the penetration of these bacteria into M-HeLa cells. However, M-HeLa cells have not been characterized by large number of these receptors. It turned out that S. proteamaculans attachment to the host cell surface resulted in an increment of EGFR and β1 integrin genes expression. Such gene expression increment also caused Escherichia coli attachment, transformed with a plasmid encoding OmpX from S. proteamaculans. Thus, an OmpX binding to the host cell surface caused an increase in the EGFR and β1 integrin expression involved in S. proteamaculans invasion.Vascular occlusive diseases such myocardial infarction, peripheral artery disease of the lower extremities, or stroke still represent a substantial health burden worldwide [...].Epilepsy is a complex disorder affecting the central nervous system and is characterised by spontaneously recurring seizures (SRSs). Epileptic patients undergo symptomatic pharmacological treatments, however, in 30% of cases, they are ineffective, mostly in patients with temporal lobe epilepsy. Therefore, there is a need for developing novel treatment strategies. Transplantation of cells releasing γ-aminobutyric acid (GABA) could be used to counteract the imbalance between excitation and inhibition within epileptic neuronal networks. We generated GABAergic interneuron precursors from human embryonic stem cells (hESCs) and grafted them in the hippocampi of rats developing chronic SRSs after kainic acid-induced status epilepticus. Using whole-cell patch-clamp recordings, we characterised the maturation of the grafted cells into functional GABAergic interneurons in the host brain, and we confirmed the presence of functional inhibitory synaptic connections from grafted cells onto the host neurons. Moreover, optogenetic stimulation of grafted hESC-derived interneurons reduced the rate of epileptiform discharges in vitro. We also observed decreased SRS frequency and total time spent in SRSs in these animals in vivo as compared to non-grafted controls. These data represent a proof-of-concept that hESC-derived GABAergic neurons can exert a therapeutic effect on epileptic animals presumably through establishing inhibitory synapses with host neurons.In addition to being a steroid hormone, 17β-estradiol (E2) is also a neurosteroid produced in neurons in various regions of the brain of many species, including humans. Neuron-derived E2 (NDE2) is synthesized from androgen precursors via the action of the biosynthetic enzyme aromatase, which is located at synapses and in presynaptic terminals in neurons in both the male and female brain. In this review, we discuss evidence supporting a key role for NDE2 as a neuromodulator that regulates synaptic plasticity and memory. Evidence supporting an important neuromodulatory role of NDE2 in the brain has come from studies using aromatase inhibitors, aromatase overexpression in neurons, global aromatase knockout mice, and the recent development of conditional forebrain neuron-specific knockout mice. Collectively, these studies demonstrate a key role of NDE2 in the regulation of synapse and spine density, efficacy of excitatory synaptic transmission and long-term potentiation, and regulation of hippocampal-dependent recognition memory, spatial reference memory, and contextual fear memory. NDE2 is suggested to achieve these effects through estrogen receptor-mediated regulation of rapid kinase signaling and CREB-BDNF signaling pathways, which regulate actin remodeling, as well as transcription, translation, and transport of synaptic proteins critical for synaptic plasticity and function.Physiological processes and behaviors in many mammals are rhythmic. Recently there has been increasing interest in the role of circadian rhythmicity in the control of reproductive function. The circadian rhythm of the pineal hormone melatonin plays a role in synchronizing the reproductive responses of animals to environmental light conditions. There is some evidence that melatonin may have a role in the biological regulation of circadian rhythms and reproduction in humans. Moreover, circadian rhythms and clock genes appear to be involved in optimal reproductive performance. These rhythms are controlled by an endogenous molecular clock within the suprachiasmatic nucleus (SCN) in the hypothalamus, which is entrained by the light/dark cycle. The SCN synchronizes multiple subsidiary oscillators (clock genes) existing in various tissues throughout the body. The basis for maintaining the circadian rhythm is a molecular clock consisting of transcriptional/translational feedback loops. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance. This mini review summarizes the current knowledge regarding the interrelationships between melatonin and the endogenous molecular clocks and their involvement in reproductive physiology (e.g., ovulation) and pathophysiology (e.g., polycystic ovarian syndrome).The pituitary is an organ of dual provenance the anterior lobe is epithelial in origin, whereas the posterior lobe derives from the neural ectoderm. The pituitary gland is a pivotal element of the axis regulating reproductive function in mammals. It collects signals from the hypothalamus, and by secreting gonadotropins (FSH and LH) it stimulates the ovary into cyclic activity resulting in a menstrual cycle and in ovulation. Pituitary organogenesis is comprised of three main stages controlled by different signaling molecules first, the initiation of pituitary organogenesis and subsequent formation of Rathke's pouch; second, the migration of Rathke's pouch cells and their proliferation; and third, lineage determination and cellular differentiation. Any disruption of this sequence, e.g., gene mutation, can lead to numerous developmental disorders. Gene mutations contributing to disordered pituitary development can themselves be classified mutations affecting transcriptional determinants of pituitary development, mutations related to gonadotropin deficiency, mutations concerning the beta subunit of FSH and LH, and mutations in the DAX-1 gene as a cause of adrenal hypoplasia and disturbed responsiveness of the pituitary to GnRH. All these mutations lead to disruption in the hypothalamic-pituitary-ovarian axis and contribute to the development of primary amenorrhea.TET3 is a member of the TET (ten-eleven translocation) proteins family that catalyzes the conversion of the 5-methylcytosine into 5-hydroxymethylcytosine. TET proteins can also affect chromatin modifications and gene expression independently of their enzymatic activity via interactions with other proteins. O-GlcNAc transferase (OGT), the enzyme responsible for modification of proteins via binding of N-acetylglucosamine residues, is one of the proteins whose action may be dependent on TET3. Here, we demonstrated that in endometrial cancer cells both TET3 and OGT affected the expression of genes involved in epithelial to mesenchymal transition (EMT), i.e., FOXC1, TWIST1, and ZEB1. OGT overexpression was caused by an increase in TWIST1 and ZEB1 levels in HEC-1A and Ishikawa cells, which was associated with increased O-GlcNAcylation of histone H2B and trimethylation of H3K4. The TET3 had the opposite effect on gene expressions and histone modifications. OGT and TET3 differently affected FOXC1 expression and the migratory potential of HEC-1A and Ishikawa cells. Analysis of gene expressions in cancer tissue samples from endometrial cancer patients confirmed the association between OGT or TET3 and EMT genes. Our results contribute to the knowledge of the role of the TET3/OGT relationship in the complex mechanism supporting endometrial cancer progression.Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.Substitution of the conserved Histidine 448 present in one of the three consensus elements characterizing the guanosine nucleotide binding domain (IF2 G2) of Escherichia coli translation initiation factor IF2 resulted in impaired ribosome-dependent GTPase activity which prevented IF2 dissociation from the ribosome, caused a severe protein synthesis inhibition, and yielded a dominant lethal phenotype. A reduced IF2 affinity for the ribosome was previously shown to suppress this lethality. Here, we demonstrate that also a reduced IF2 affinity for fMet-tRNA can suppress this dominant lethal phenotype and allows IF2 to support faithful translation in the complete absence of GTP hydrolysis. These results strengthen the premise that the conformational changes of ribosome, IF2, and fMet-tRNA occurring during the late stages of translation initiation are thermally driven and that the energy generated by IF2-dependent GTP hydrolysis is not required for successful translation initiation and that the dissociation of the interaction between IF2 C2 and the acceptor end of fMet-tRNA, which represents the last tie anchoring the factor to the ribosome before the formation of an elongation-competent 70S complex, is rate limiting for both the adjustment of fMet-tRNA in a productive P site and the IF2 release from the ribosome.This study was designed to determine the effect of acute caffeine (CAF) administration, which exerts a broad spectrum of anti-inflammatory activity, on the synthesis of pro-inflammatory cytokines and their receptors in the hypothalamus and choroid plexus (ChP) during acute inflammation caused by the injection of bacterial endotoxin-lipopolysaccharide (LPS). The experiment was performed on 24 female sheep randomly divided into four groups control; LPS treated (iv.; 400 ng/kg of body mass (bm.)); CAF treated (iv.; 30 mg/kg of bm.); and LPS and CAF treated. The animals were euthanized 3 h after the treatment. It was found that acute administration of CAF suppressed the synthesis of interleukin (IL-1β) and tumor necrosis factor (TNF)α, but did not influence IL-6, in the hypothalamus during LPS-induced inflammation. The injection of CAF reduced the LPS-induced expression of TNF mRNA in the ChP. CAF lowered the gene expression of IL-6 cytokine family signal transducer (IL6ST) and TNF receptor superfamily member 1A (TNFRSF1) in the hypothalamus and IL-1 type II receptor (IL1R2) in the ChP. Our study on the sheep model suggests that CAF may attenuate the inflammatory response at the hypothalamic level and partly influence the inflammatory signal generated by the ChP cells. This suggests the potential of CAF to suppress neuroinflammatory processes induced by peripheral immune/inflammatory challenges.One of the concerns today's societies face is the development of resistant pathogenic microorganisms. The need to tackle this problem has driven the development of innovative antimicrobial materials capable of killing or inhibiting the growth of microorganisms. The present study investigates the dependence of the antimicrobial activity and solubility properties on the hydrophilicity/hydrophobicity ratio of antimicrobial coatings based on quaternary ammonium compounds. In this line, suitable hydrophilic and hydrophobic structural units were selected for synthesizing the antimicrobial copolymers poly(4-vinylbenzyl dimethyldodecylammonium chloride-co-acrylic acid), P(VBCDDA-co-AA20) and poly(dodecyltrimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate), P(SSAmC12-co-GMA20), bearing an alkyl chain of 12 carbons either through covalent bonding or through electrostatic interaction. The cross-linking reaction of the carboxylic group of acrylic acid (AA) with the epoxide group of glycidyl methacrylate (GMA) of these two series of reactive antimicrobial copolymers was explored in blends, obtained through solution casting after curing at various temperatures. The release of the final products in pure water and NaCl 1 M solutions (as analyzed by gravimetry and total organic carbon, TOC/total nitrogen, TN analyses), could be controlled by the coating composition. The cross-linked polymeric membranes of composition 60/40 w/w % ratios led to 97.8 and 99.7% mortality for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, whereas the coating 20/80 w/w % resulted in 96.6 and 99.8% cell reduction. Despite the decrease in hydrophobicity (from a 16- to a 12-carbon alkyl chain), the new materials maintained the killing efficacy, while at the same time resulting in increased release to the aqueous solution.

Rats exposed to chronic predator scent stress mimic the phenotype of complex post-traumatic stress disorder (PTSD) in humans, including altered adrenal morphology and function. High- and low-anxiety phenotypes have been described in rats exposed to predator scent stress (PSS). This study aimed to determine whether these high- and low-anxiety phenotypes correlate with changes in adrenal histomorphology and corticosteroid production.

Rats were exposed to PSS for ten days. Thirty days later, the rats' anxiety index (AI) was assessed with an elevated plus-maze test. Based on differences in AI, the rats were segregated into low- (AI ≤ 0.8, n = 9) and high- (AI > 0.8, n = 10) anxiety phenotypes. Plasma corticosterone (CORT) concentrations were measured by ELISA. Adrenal CORT, desoxyCORT, and 11-dehydroCORT were measured by high-performance liquid chromatography. After staining with hematoxylin and eosin, adrenal histomorphometric changes were evaluated by measuring the thickness of the functional zones of the adrenal cortex.

Autoři článku: Samuelsenlutz9948 (Boyd Cochran)