Rutledgecurtis3937
Thanks to magic-angle spinning (MAS) probes with frequencies of 60-100 kHz, the benefit of high-sensitivity 1H detection can now be broadly realized in biomolecular solid-state NMR for the analysis of microcrystalline, sedimented, or lipid-embedded preparations. Nonetheless, performing the assignment of all resonances remains a rate-limiting step in protein structural studies, and even the latest optimized protocols fail to perform this step when the protein size exceeds ∼20 kDa. Here, we leverage the benefits of fast (100 kHz) MAS and high (800 MHz) magnetic fields to design an approach that lifts this limitation. Through the creation, conservation, and acquisition of independent magnetization pathways within a single triple-resonance MAS NMR experiment, a single self-consistent data set can be acquired, providing enhanced sensitivity, reduced vulnerability to machine or sample instabilities, and highly redundant linking that supports fully automated peak picking and resonance assignment. The method, dubbed RAVASSA (redundant assignment via a single simultaneous acquisition), is demonstrated with the assignment of the largest protein to date in the solid state, the 42.5 kDa maltose binding protein, using a single fully protonated microcrystalline sample and 1 week of spectrometer time.Shotgun lipidomics is a powerful tool that enables simultaneous and fast quantification of diverse lipid classes through mass spectrometry based analyses of directly infused crude lipid extracts. We present here a shotgun lipidomics platform established to quantify 38 lipid classes belonging to four lipid categories present in mammalian samples and show the fine-tuning and comprehensive evaluation of its experimental parameters and performance. We first determined for all the targeted lipid classes the collision energy levels optimal for the recording of their lipid class- and species-specific fragment ions and fine-tuned the energy levels applied in the platform. We then performed a series of titrations to define the boundaries of linear signal response for the targeted lipid classes, and demonstrated that the dynamic quantification range spanned more than 3 orders of magnitude and reached sub picomole levels for 35 lipid classes. The platform identified 273, 261, and 287 lipid species in brain, plasma, and cultured fibroblast samples, respectively, at the respective optimal working sample amounts. The platform properly quantified the majority of these identified lipid species, while lipid species measured to be below the limit of quantification were efficiently removed from the data sets by the use of statistical analyses of data reproducibility or a cutoff threshold. Finally, we demonstrated that a series of parameters of cell culture conditions influence lipidomics outcomes, including confluency, medium supplements, and use of transfection reagents. The present study provides a guideline for setting up and using a simple and efficient platform for quantitatively exploring the mammalian lipidome.The protective effect and mechanism of action of p-coumaric acid for alleviating palmitic acid (PA)-induced hepatocyte injury were investigated using a PA-induced human hepatoma cell (HepG2)-based hepatocellular injury model and MTT cell viability determinations. Additionally, reduced glutathione content and catalase activity were detected using commercial kits, while intracellular lipid accumulation and total triglyceride content were measured using Oil Red O staining and a triglyceride quantification kit, respectively. Tolebrutinib purchase Meanwhile, levels of proteins (fatty acid synthase, sterol regulatory element-binding protein-1, stearoyl-CoA desaturase-1) and proliferator-activated receptor-α mRNA were determined using western blotting and real-time quantitative polymerase chain reaction, respectively. After p-coumaric acid targets were identified using network pharmacological analysis, cyclooxygenase-2 (COX-2) expression was assessed via western blotting, while prostaglandin E2 accumulation was measured via an enzyme-linked immunosorbent assay. Notably, PA-treated hepatocytes exhibited increased viability (87.3 ± 2.2% vs 65.5 ± 2.5% for untreated cells), with reduced intracellular lipid accumulation reflecting promotion of lipolysis and fatty acid β-oxidation; this protective effect may depend on inhibition of both PA-induced HepG2 cell COX-2 expression and PGE2 accumulation.Excessive application of fertilizers negatively affects soil health, causes low nutrient utilization efficiency in plants, and leads to environmental pollution. The application of controlled-release fertilizer is gaining momentum to overcome this crisis. Engineered nanocomposites (ENCs) have shown tremendous promise for need-based delivery of agrochemicals (macro- and micronutrients, pesticides, and other agrochemicals). This review provides comprehensive coverage of synthesis of nanocomposites, their physical-chemical characterization, and techniques to achieve sustained release and targeted delivery to the crops, emphasizing their beneficial role in plant production and protection. Related aspects like feasibility of the application, commercialization of the nanoformulations, and biosafety concerns are also highlighted. This will be helpful to develop a critical understanding of the current state of the art in the controlled release of agrochemicals through nanocomposites. The pressing issues like scale up production, cost analyses, field-based trials, and environmental safety concerns should be given greater attention in future studies.The effect of strong ion-solvent interactions on the differential mobility behavior of the tricarbastannatrane cation, N(CH2CH2CH2)3Sn+, has been investigated. Exotic "type D" dispersion behavior, which is intermediate to the more common types C and A behavior, is observed for gaseous N2 environments that are seeded with acetone and acetonitrile vapor. Quantum chemical calculations and first-principles modeling show that under low-field conditions [N(CH2CH2CH2)3Sn + solvent]+ complexes containing a single solvent molecule survive the entire separation waveform duty cycle and interact weakly with the chemically modified environment. However, at high separation voltages, the ion-solvent bond dissociates and dynamic clustering ensues.