Rossencowan2749

Z Iurium Wiki

Singlet exciton fission photovoltaic technology requires chromophores with their lowest excited states arranged so that 2E(T1) less then E(S1) and E(S1) less then E(T2). Herein, qualitative theory and quantum chemical calculations are used to develop explicit strategies on how to use Baird's 4n rule on excited-state aromaticity, combined with Hückel's 4n + 2 rule for ground-state aromaticity, to tailor new potential chromophores for singlet fission. We first analyze the E(T1), E(S1), and E(T2) of benzene and cyclobutadiene (CBD) as excited-state antiaromatic and aromatic archetypes, respectively, and reveal that CBD fulfills the criteria on the state ordering for a singlet fission chromophore. We then look at fulvenes, a class of compounds that can be tuned by choice of substituents from Baird-antiaromatic to Baird-aromatic in T1 and S1 and from Hückel-aromatic to Hückel-antiaromatic in S0. The T1 and S1 states of most substituted fulvenes (159 of 225) are described by singly excited HOMO → LUMO configurations, providing a rational for the simultaneous tuning of E(T1) and E(S1) along an approximate (anti)aromaticity coordinate. Key to the tunability is the exchange integral (KH,L), which ideally is constant throughout the compound class, providing a constant ΔE(S1 - T1). This leads us to a geometric model for the identification of singlet fission chromophores, and we explore what factors limit the model. Candidates with calculated E(T1) values of ∼1 eV or higher are identified among benzannelated 4nπ-electron compound classes and siloles. In brief, it is clarified how the joint utilization of Baird's 4n and Hückel's 4n + 2 rules, together with substituent effects (electronic and steric) and benzannelation, can be used to tailor new chromophores with potential use in singlet fission photovoltaics.Absolute isotopic ratios are required for isobaric interference corrections, spike calibrations, and isotopic analysis by external normalization methods. However, high-precision natural isotopic abundance data are lacking for many elements, particularly those with less than four isotopes or having isobaric isotopes with other elements. In this study, we developed a method for absolute isotope ratio analysis, which integrates the concept of the double-spike method with isotopic analysis of element pairs that have isobaric isotopes. Using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), the isotopic composition of a sample can be derived by measuring a series of mixtures of the sample and a spike element that has an isobaric isotope with the element being analyzed. We applied this method to five pairs of elements (Ca-Ti, V-Ti, Cr-Ti, Ni-Zn, and In-Sn) and obtained the absolute isotopic ratios for Ca, V, Cr, Ni, and In, as well as the relative Ca isotopic composition. By simultaneous measurement of Ti and Ca isotopes, a quantitative relationship between the instrumental mass fractionation factors and element masses was developed. After correcting for the difference in instrumental mass fractionation factors, the obtained absolute ratios agree well with literature data and have per mil level accuracy. This method has considerable potential in measuring the absolute isotopic ratios of elements that have isobaric isotope with other elements. Such precisely determined absolute isotopic ratios and the relationship between the instrumental mass fractionation factors and elemental masses will improve isobaric interference corrections, particularly when chemical purification is imperfect or during laser ablation analysis.Size-exclusion chromatography employing aqueous mobile phases with volatile salts at neutral pH combined with electrospray-ionization mass spectrometry (SEC-ESI-MS) is a useful tool to study proteins in their native state. However, whether the applied eluent conditions actually prevent protein-stationary phase interactions, and/or protein denaturation, often is not assessed. In this study, the effects of volatile mobile phase additives on SEC retention and ESI of proteins were thoroughly investigated. Myoglobin was used as the main model protein, and eluents of varying ionic strength and pH were applied. The degree of interaction between protein and stationary phase was evaluated by calculating the SEC distribution coefficient. Protein-ion charge state distributions obtained during offline and online native ESI-MS were used to monitor alterations in protein structure. Interestingly, most of the supposedly mild eluent compositions induced nonideal SEC behavior and/or protein unfolding. SEC experiments revealed that the nature, ionic strength, and pH of the eluent affected protein retention. Protein-stationary phase interactions were effectively avoided using ammonium acetate at ionic strengths above 0.1 M. Direct-infusion ESI-MS showed that the tested volatile eluent salts seem to follow the Hofmeister series no denaturation was induced using ammonium acetate (kosmotropic), whereas ammonium formate and bicarbonate (both chaotropic) caused structural changes. Using a mobile phase of 0.2 M ammonium acetate (pH 6.9), several proteins (i.e., myoglobin, carbonic anhydrase, and cytochrome c) could be analyzed by SEC-ESI-MS using different column chemistries without compromising their native state. Overall, with SEC-ESI-MS, the effect of nonspecific interactions between protein and stationary phase on the protein structure can be studied, even revealing gradual structural differences along a peak.Both targeting and penetrating ability are the key characteristics for tissue probing and precise delivery. check details To construct an efficient nano probing and delivery system toward human epidermal growth factor receptor 2 (HER2) positive cancer, we established a nano liposomal system functionalized with a newly screened HER2 targeting peptide (HP2, YDLKEPEH) and the cell-penetrating peptide TAT simultaneously. Compared with the monofunctionalized liposomal probes, the dual-functional ones demonstrated a synergetic effect in cell uptake, drug delivery, and in vivo imaging. The improved efficacy of the synergetic system provides a prospective strategy for cancer diagnosis and therapy.

Autoři článku: Rossencowan2749 (Deleon Parrish)