Rogersbondesen3526

Z Iurium Wiki

We also show the correlation between the increase of the temperature gradient in the bulk and this enhancement of ion delocalization through the trap.Only recently has the essential role of the percolation critical point been considered on the dynamical properties of connected regions of aligned spins (domains) after a sudden temperature quench. In equilibrium, it is possible to resolve the contribution to criticality by the thermal and percolative effects (on finite lattices, while in the thermodynamic limit they merge at a single critical temperature) by studying the cluster size heterogeneity, H_eq(T), a measure of how different the domains are in size. We extend this equilibrium measure here and study its temporal evolution, H(t), after driving the system out of equilibrium by a sudden quench in temperature. We show that this single parameter is able to detect and well-separate the different time regimes, related to the two timescales in the problem, namely the short percolative and the long coarsening one.By using transfer-matrix method we compute survival probabilities for the directed percolation problem on strips of a square lattice, and get very precise estimates of their Yang-Lee zeros lying closest to the real axis in the complex plane of occupation probability. This allows us to get accurate values for transverse-size critical exponent and percolation threshold.Slow dynamic nonlinearity is ubiquitous amongst brittle materials, such as rocks and concrete, with cracked microstructures. A defining feature of the behavior is the logarithmic-in-time recovery of stiffness after a mechanical conditioning. Materials observed to exhibit slow dynamics are sufficiently different in microstructure, chemical composition, and scale (ranging from the laboratory to the seismological) to suggest some kind of universality. A consensus of theoretical understanding of the universality in general and the log(time) recovery in particular is lacking. Seminal studies were focused on sandstones and other natural rocks, but in recent years other experimental venues have been introduced with which to inform theory. ABBV-2222 modulator One such system is unconsolidated glass bead packs. However, bead packs still contain many contact points. The force distribution amongst the contacts is unknown. Here, we present slow dynamics measurements on a yet simpler system-a single glass bead confined between two large glass plates. The system is designed with a view towards rapid control of the contact zone environment. Ultrasonic waves are used as a probe of the system, and changes are assessed with coda wave interferometry. Three different methods of low-frequency conditioning are applied; all lead to slow dynamic recoveries. link2 Results imply that force chains do not play an essential role in granular media slow dynamics, as they are absent in our system.A quasi-two-dimensional system of hard spheres strongly confined between two parallel plates is considered. The attention is focused on the macroscopic self-diffusion process observed when the system is seen from above or from below. The transport equation, and the associated self-diffusion coefficient, are derived from a Boltzmann-Lorentz kinetic equation, valid in the dilute limit. Since the equilibrium state of the system is inhomogeneous, this requires the use of a modified Chapman-Enskog expansion that distinguishes between equilibrium and nonequilibrium gradients of the density of labeled particles. The self-diffusion coefficient is obtained as a function of the separation between the two confining plates. The theoretical predictions are compared with molecular dynamics simulation results and a good agreement is found.In this article, we propose a minimal model for the cooking-induced deformation of spaghetti and related food products. Our approach has parallels to the use of rod theories for the mechanics of slender bodies undergoing growth and is inspired by a wealth of experimental data from the food science literature. We use our model to investigate the cooking of a single strand of spaghetti confined to a pot and reproduce a curious three-stage deformation sequence that arises in the cooking process.The twist-bend nematic (N_TB) phase is a doubly degenerated heliconical structure with nanometric pitch and spontaneous bend and twist deformations. It is favored by symmetry-breaking molecular structures, such as bent dimers and bent-core molecules, and it is currently one of the burgeoning fields of liquid-crystal research. Although tremendous advances have been reported in the past five years, especially in molecular synthesis, most of its potential applications are held back by the lack of a proper and definitive elastic model to describe its behavior under various situations such as confinement and applied field. In this work we use a recently proposed stable state elastic model and the fact that the mesophase behaves as a lamellar structure to propose a mesoscopic or coarse-grained model for the N_TB phase. By means of standard procedures used for smectic and cholesteric liquid crystals, we arrive at a closed-form energy for the phase and apply it to a few situations of interest. The predicted compressibility for several values of the cone angle and the critical field for field-induced deformation agree well with recent experimental data.Dynamical stability is a prerequisite for control and functioning of desired nanomachines. We utilize the Caldeira-Leggett master equation to investigate dynamical stability of molecular cogwheels modeled as a rigid, propeller-shaped planar rotator. To match certain expected realistic physical situations, we consider a weakly nonharmonic external potential for the rotator. Two methods for investigating stability are used. First, we employ a quantum-mechanical counterpart of the so-called "first passage time" method. Second, we investigate time dependence of the standard deviation of the rotator for both the angle and angular momentum quantum observables. A perturbationlike procedure is introduced and implemented to provide the closed set of differential equations for the moments. Extensive analysis is performed for different combinations of the values of system parameters. The two methods are, in a sense, mutually complementary. Appropriate for the short time behavior, the first passage time exhibits a numerically relevant dependence only on the damping factor as well as on the rotator size. However, the standard deviations for both the angle and angular momentum observables exhibit strong dependence on the parameter values for both short and long time intervals. Contrary to our expectations, the time decrease of the standard deviations is found for certain parameter regimes. In addition, for certain parameter regimes nonmonotonic dependence on the rotator size is observed for the standard deviations and for the damping of the oscillation amplitude. Hence, nonfulfillment of the classical expectation that the size of the rotator can be reduced to the inertia of the rotator. In effect, the task of designing the desired protocols for the proper control of the molecular rotations becomes an optimization problem that requires further technical elaboration.We study the origin of the log-normal popularity distribution of trending memes observed in many real social networks. Based on a biological analogy, we introduce a fitness of each meme, which is a natural assumption based on sociological reasons. From numerical simulations, we find that the relative popularity distribution of the trending memes becomes a log-normal distribution when the fitness of the meme increases exponentially. On the other hand, if the fitness grows slowly, then the distribution significantly deviates from the log-normal distribution. This indicates that the fast growth of fitness is the necessary condition for the trending meme. Furthermore, we also show that the popularity of the trending topic grows linearly. These results provide a clue to understand long-lasting questions, such as what causes some memes to become extremely popular and how such memes are exposed to the public much longer than others.We study the extinction risk of a fragmented population residing on a network of patches coupled by migration, where the local patch dynamics includes deterministic bistability. Mixing between patches is shown to dramatically influence the population's viability. link3 We demonstrate that slow migration always increases the population's global extinction risk compared to the isolated case, while at fast migration synchrony between patches minimizes the population's extinction risk. Moreover, we discover a critical migration rate that maximizes the extinction risk of the population, and identify an early-warning signal when approaching this state. Our theoretical results are confirmed via the highly efficient weighted ensemble method. Notably, our theoretical formalism can also be applied to studying switching in gene regulatory networks with multiple transcriptional states.This corrects the article DOI 10.1103/PhysRevE.99.023114.Using concepts from classical density functional theory, we investigate the freezing of a two-dimensional system of ultrasoft particles in a one-dimensional external potential, a phenomenon often called laser-induced freezing (LIF). In the first part of the paper, we present numerical results from free minimization of a mean-field density functional for a system of particles interacting via the GEM-4 potential. We show that the system does indeed display a LIF transition, although the interaction potential is markedly different from the cases studied before. We also introduce a suitably defined effective density within the potential wells ρ[over ¯]_eff as a control parameter of LIF, rather than the amplitude of the external potential as in the common LIF scenario. In the second part, we suggest a theoretical description of the onset of LIF which is based on the pressure-balance equation relating the pressure tensor and the external potential. Evaluating this equation for the modulated liquid phase at effective density ρ[over ¯]_eff and combining it with the (known) stability threshold of the corresponding bulk fluid, we can predict the critical effective density or, equivalently, the potential amplitude related to the onset of LIF. Our approach yields very good results for the model at hand and it is transferable, in principle, to other model systems.We discuss a method to calculate with quantum molecular dynamics simulations the rate of energy exchanges between electrons and ions in two-temperature plasmas, liquid metals, and hot solids. Promising results from this method were recently reported for various materials and physical conditions [Simoni and Daligault, Phys. Rev. Lett. 122, 205001 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.205001]. Like other ab initio calculations, the approach offers a very useful comparison with the experimental measurements and permits an extension into conditions not covered by the experiments. The energy relaxation rate is related to the friction coefficients felt by individual ions due to their nonadiabatic interactions with electrons. Each coefficient satisfies a Kubo relation given by the time integral of the autocorrelation function of the interaction force between an ion and the electrons. These Kubo relations are evaluated using the output of quantum molecular dynamics calculations in which electrons are treated in the framework of finite-temperature density functional theory.

Autoři článku: Rogersbondesen3526 (Egholm Boisen)