Robbinsdodson0761

Z Iurium Wiki

In contrast, on excitation of the anionic species we observe that the spectral pattern is similar to that in alcohols. Additionally, the effect of the LLC water molecules on the rate of the intramolecular hydrogen transfer process has been explored. Selleck HADA chemical The ESIPT rates of both the probes, which are ultrafast ( less then 20 ps) in neat polar protic and aprotic solvents, get slowed down dramatically by almost 15 times inside the LLC phases. Such an extent of retardation in the ESIPT rate is extremely rare in the literature, which signals towards the unique behaviour of the water molecules inside the LLC nanochannels. The structural topology of the LLC phases also influences the ESIPT rate with the timescale of the process increasing from the cubic to the hexagonal phase.We investigated the growth and auto-oxidation of Pd deposited onto a AgOx single-layer on Ag(111) using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Palladium initially grows as well-dispersed, single-layer clusters that adopt the same triangular shape and orientation of Agn units in the underlying AgOx layer. Bi-layer clusters preferentially form upon increasing the Pd coverage to ∼0.30 ML (monolayer) and continue to develop until aggregating and forming a nearly conformal Pd bi-layer at a coverage near 2 ML. Analysis of the STM images provides quantitative evidence of a transition from single to bi-layer Pd growth on the AgOx layer, and a continuation of bi-layer growth with increasing Pd coverage from ∼0.3 to 2 ML. XPS further demonstrates that the AgOx layer efficiently transfers oxygen to Pd at 300 K, and that the fraction of Pd that oxidizes is approximately equal to the local oxygen coverage in the AgOx layer for Pd coverages up to at least ∼0.7 ML. Our results show that oxygen in the initial AgOx layer mediates the growth and structural properties of Pd on the AgOx/Ag(111) surface, enabling the preparation of model PdAg surfaces with uniformly distributed single or bi-layer Pd clusters. Facile auto-oxidation of Pd by AgOx further suggests that oxygen transfer from Ag to Pd could play a role in promoting oxidation chemistry of adsorbed molecules on PdAg surfaces.Eu-doped CdS quantum dots (QDs) with the Eu dopant concentration in the range of 0.5-10% and zinc blende (ZB) structure were successfully synthesized by a wet chemical method. The fabricated Eu-doped CdS QDs exhibited emissions in the visible window approximately at 465, 590, 618 and 696 nm, which correspond to the excitonic emission of CdS QDs and the electronic transitions of the intra 4f6 configuration from the 5D0 level to 7F1, 7F2 and 7F4 levels of Eu3+ dopant ions, respectively. Judd-Ofelt theory was used to estimate the properties of ligand field and luminescence quantum efficiency of the material. The interaction mechanism and the efficiency of the energy transfer process from CdS QDs to Eu3+ ions were found by using Reisfeld's approximation formulas. The luminescence quenching of Eu3+-doped CdS QDs was studied through analysis of emission spectra and decay curves. The dominant interaction mechanism between Eu3+ ions and energy transfer parameters have been found by fitting the decay curves to the Inokuti-Hirayama model. The cross-relaxation channels leading to the luminescence quenching of Eu3+ have also been predicted.The effect of particle size and chemical order on the temperature-dependent magnetic properties of Fe@Ni and Ni@Fe core-shell nanoparticles is studied in the framework of a classical spin Hamiltonian and Monte Carlo simulations. We found that the mean temperature-dependent magnetization and magnetic-ordering temperature are strongly affected by both the particle size (in size range of 4 to 16 nm) and core-shell chemical order. As a main result, we report the depression of the magnetic ordering-temperature with decreasing size of the elemental Fe and Ni nanoparticles. More specifically, in the case of Fe and Ni nanoparticles, the magnetic-ordering temperature is lowered by 40 (195 K) to 300 (175 K) compared to the bulk value for nanoparticle diameters ranging from 16 to 4 nm, respectively, consistent with previous theoretical data. We further provide a comprehensive insight into the magnetic properties of Fe@Ni and Ni@Fe nanoparticles, unveiling a rich and distinct magnetic-ordering temperature and spin structure that emphatically depends on the core/shell ratio.Unveiling the reaction mechanism is significant for developing high-performance catalysts. In this paper, a series of precisely controlled PdxM147-x (M = Cu, Pt, Au, Rh, Ru) dendrimer encapsulated nanoparticles (DENs) has been successfully synthesized. The mechanisms of PdxM147-x as catalysts for Suzuki cross-coupling reactions were investigated by combining experimental and theoretical methods. The experimental results indicate that Pd74Cu73 DEN shows similar activity to Pd147 DEN and excellent substrate adaptability under mild reaction conditions. Moreover, the Cu component can play an important role in tuning the catalytic activity of PdxCu147-x DEN. Density functional theory (DFT) calculations illustrate that the similar activities of the Pd147 and Pd74Cu73 DENs originate from the comparable energy barriers of the rate-determining steps. The partial density of states (PDOS) and electron density differences demonstrate that Cu decreases the intensities of the valence orbitals of the top and edge Pd atoms and weakens orbital interactions between the intermediates and Pd74Cu73 DEN, leading to low desorption energies of the products. This work can provide a promising strategy to reduce the cost of Pd catalysts in Suzuki cross-coupling reactions.Acetamide (CH3CONH2) is the largest molecule containing an amide bond that has been detected in an interstellar medium; it is considered to be a precursor for complex organic molecules (COM). We utilized the advantages of a para-hydrogen (p-H2) quantum-solid matrix host to perform efficient reactions of hydrogen atoms with CH3CONH2. The H-abstraction reaction from the methyl group of CH3CONH2 to produce the 2-amino-2-oxoethyl radical, ˙CH2CONH2, was observed as the sole reaction channel in solid p-H2 at 3.3 K, consistent with theoretical predictions that this reaction has the smallest barrier among all possible channels. Our results show that the amide bond of acetamide is unaffected by hydrogen exposure, but the hydrogen abstraction activates this molecule to react with other species on its methyl site to extend its size or to include other functional groups as a first step to form COM under prebiotic or abiotic conditions. This previously neglected path should be considered in the astrochemical modeling. The photolysis of ˙CH2CONH2 at wavelengths 380-450 nm produces ketene; this step might provide a plausible mechanism to explain the anti-correlated abundance of ketene and acetamide in some astronomical observations.

Autoři článku: Robbinsdodson0761 (Randolph Stilling)