Ringjohansson8455
We include recent research devoted to validation of pore-scale simulations, particularly the use of visual observations from microfluidic experiments.Purpose People with hearing impairment (HI) face numerous challenges that can be minimized with the use of hearing aids and cochlear implants. Despite technological advances in these assistive hearing devices, musical perception remains difficult for these people. Tests and protocols developed to assess the musical perception of this audience were the target of this systematic review, whose objective was to investigate how assessments of musical perception in people with HI are carried out. Method Searches for primary articles were carried out in the PubMed/MEDLINE, Scopus, Web of Science, Latin American and Caribbean Health Sciences Literature, and ASHAWire databases. Search results were managed using EndNote X9 software, and analysis was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement. Results The 16 cross-sectional included studies analyzed music perception data from people with HI compared to a control group of participants with normal heariot seem to accurately represent real instruments. The need to minimize semantic parallelism that involves the auditory skills and elements of music involved in the assessment of musical perception is highlighted.Thermally activated transitions are ubiquitous in nature, occurring in complex environments which are typically conceived as ideal viscous fluids. We report the first direct observations of a Brownian bead transiting between the wells of a bistable optical potential in a viscoelastic fluid with a single long relaxation time. We precisely characterize both the potential and the fluid, thus enabling a neat comparison between our experimental results and a theoretical model based on the generalized Langevin equation. Our findings reveal a drastic amplification of the transition rates compared to those in a Newtonian fluid, stemming from the relaxation of the fluid during the particle crossing events.Celestial amplitudes which use conformal primary wave functions rather than plane waves as external states offer a novel opportunity to study properties of amplitudes with manifest conformal covariance and give insight into a potential holographic celestial conformal field theory at the null boundary of asymptotically flat space. YM201636 Since translation invariance is obscured in the conformal basis, features of amplitudes that heavily rely on it appear to be lost. Among these are the remarkable relations between gauge theory and gravity amplitudes known as the double copy. Nevertheless, properties of amplitudes reflecting fundamental aspects of the perturbative regime of quantum field theory are expected to survive a change of basis. Here we show that there exists a well-defined procedure for a celestial double copy. This requires a generalization of the usual squaring of numerators which entails first promoting them to generalized differential operators acting on external wave functions and then squaring them. We demonstrate this procedure for three- and four-point celestial amplitudes and give an argument for its validity to all multiplicities.We study light-matter interactions in two-dimensional photonic systems in the presence of a spatially homogeneous synthetic magnetic field for light. Specifically, we consider one or more two-level emitters located in the bulk region of the lattice, where for increasing magnetic field the photonic modes change from extended plane waves to circulating Landau levels. This change has a drastic effect on the resulting emitter-field dynamics, which becomes intrinsically non-Markovian and chiral, leading to the formation of strongly coupled Landau-photon polaritons. The peculiar dynamical and spectral properties of these quasiparticles can be probed with state-of-the-art photonic lattices in the optical and the microwave domain and may find various applications for the quantum simulation of strongly interacting topological models.Flat bands near M points in the Brillouin zone are key features of honeycomb symmetry in artificial graphene (AG) where electrons may condense into novel correlated phases. Here we report the observation of van Hove singularity doublet of AG in GaAs quantum well transistors, which presents the evidence of flat bands in semiconductor AG. Two emerging peaks in photoluminescence spectra tuned by backgate voltages probe the singularity doublet of AG flat bands and demonstrate their accessibility to the Fermi level. As the Fermi level crosses the doublet, the spectra display dramatic stability against electron density, indicating interplays between electron-electron interactions and honeycomb symmetry. Our results provide a new flexible platform to explore intriguing flat band physics.Spin backflow and spin-memory loss have been well established to considerably lower the interfacial spin transmissivity of metallic magnetic interfaces and thus the energy efficiency of spin-orbit torque technologies. Here, we report that spin backflow and spin-memory loss at Pt-based heavy metal-ferromagnet interfaces can be effectively eliminated by inserting an insulating paramagnetic NiO layer of optimum thickness. The latter enables the thermal magnon-mediated essentially unity spin-current transmission at room temperature due to considerably enhanced effective spin-mixing conductance of the interface. As a result, we obtain dampinglike spin-orbit torque efficiency per unit current density of up to 0.8 as detected by the standard technology ferromagnet FeCoB and others, which reaches the expected upper-limit spin Hall ratio of Pt. We establish that Pt/NiO and Pt-Hf/NiO are two energy-efficient, integration-friendly, and high-endurance spin-current generators that provide >100 times greater energy efficiency than sputter-deposited topological insulators BiSb and BiSe. Our finding will benefit spin-orbitronic research and advance spin-torque technologies.Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe_2O_3 and the appearance of FeO_2. Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory+dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO_2 and isostructural FeO_2H_0.5 is ferric (Fe^3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.GW190521 is the compact binary with the largest masses observed to date, with at least one black hole in the pair-instability gap. This event has also been claimed to be associated with an optical flare observed by the Zwicky Transient Facility in an active galactic nucleus (AGN), possibly due to the postmerger motion of the merger remnant in the AGN gaseous disk. The Laser Interferometer Space Antenna (LISA) may detect up to ten such gas-rich black-hole binaries months to years before their detection by Laser Interferometer Gravitational Wave Observatory or Virgo-like interferometers, localizing them in the sky within ≈1°^2. LISA will also measure directly deviations from purely vacuum and stationary waveforms arising from gas accretion, dynamical friction, and orbital motion around the AGN's massive black hole (acceleration, strong lensing, and Doppler modulation). LISA will therefore be crucial to enable us to point electromagnetic telescopes ahead of time toward this novel class of gas-rich sources, to gain direct insight on their physics, and to disentangle environmental effects from corrections to general relativity that may also appear in the waveforms at low frequencies.The novel strong field autoionization (SFAI) dynamics is identified and investigated by channel-resolved angular streaking measurements of two electrons and two ions for the double-ionized CO. Comparing with the laser-assisted autoionization calculations, we demonstrate the electrons from SFAI are generated from the field-induced decay of the autoionizing state with a following acceleration in the laser fields. The energy-dependent photoelectron angular distributions further reveal that the subcycle ac-Stark effect modulates the lifetime of the autoionizing state and controls the emission of SFAI electrons in molecular frame. Our results pave the way to control the emission of resonant high-harmonic generation and trace the electron-electron correlation and electron-nuclear coupling by strong laser fields. The lifetime modulation of quantum systems in the strong laser field has great potential for quantum manipulation of chemical reactions and beyond.We introduce a new kind of foliated quantum field theory (FQFT) of gapped fracton orders in the continuum. FQFT is defined on a manifold with a layered structure given by one or more foliations, which each decompose spacetime into a stack of layers. FQFT involves a new kind of gauge field, a foliated gauge field, which behaves similar to a collection of independent gauge fields on this stack of layers. Gauge invariant operators (and their analogous particle mobilities) are constrained to the intersection of one or more layers from different foliations. The level coefficients are quantized and exhibit a duality that spatially transforms the coefficients. This duality occurs because the FQFT is a foliated fracton order. That is, the duality can decouple 2+1D gauge theories from the FQFT through a process we dub exfoliation.We report the demonstration of optical compression of an electron beam and the production of controllable trains of femtosecond, soft x-ray pulses with the Linac Coherent Light Source (LCLS) free-electron laser (FEL). This is achieved by enhanced self-amplified spontaneous emission with a 2 μm laser and a dechirper device. Optical compression was achieved by modulating the energy of an electron beam with the laser and then compressing with a chicane, resulting in high current spikes on the beam which we observe to lase. A dechirper was then used to selectively control the lasing region of the electron beam. Field autocorrelation measurements indicate a train of pulses, and we find that the number of pulses within the train can be controlled (from 1 to 5 pulses) by varying the dechirper position and undulator taper. These results are a step toward attosecond spectroscopy with x-ray FELs as well as future FEL schemes relying on optical compression of an electron beam.We propose to use chirped pulses propagating near a band gap to remotely address quantum emitters. We introduce a particular family of chirped pulses that dynamically self-compress to subwavelength spot sizes during their evolution in a medium with a quadratic dispersion relation. We analytically describe how the compression distance and width of the pulse can be tuned through its initial parameters. We show that the interaction of such pulses with a quantum emitter is highly sensitive to its position due to effective Landau-Zener processes induced by the pulse chirping. Our results propose pulse engineering as a powerful control and probing tool in the field of quantum emitters coupled to structured reservoirs.