Puggaardalstrup6651
To test the credibility of the results, the standard deviation was used to express the MBLH confidence level. The results show that the standard deviation of the MBLH was highest in low latitudes and lowest in the middle and high latitudes. Furthermore, we analyzed the trends in interannual MBLH variations, which display significant seasonal variations and spatial distributions that correspond with the current and subsolar point. Finally, we conducted a case study in the South China Sea, and identified a distinctive seasonal change and interannual decline in MBLH.Negative curvature hollow core fiber (NCHCF) is a promising candidate for sensing applications; however, research on NCHCF based fiber sensors starts only in the recent two years. In this work, an all-fiber interferometer based on an NCHCF structure is proposed for the first time. The interferometer was fabricated by simple fusion splicing of a short section of an NCHCF between two singlemode fibers (SMFs). Both simulation and experimental results show that multiple modes and modal interferences are excited within the NCHCF structure. Periodic transmission dips with high spectral extinction ratio (up to 30 dB) and wide free spectral range (FSR) are produced, which is mainly introduced by the modes coupling between HE11 and HE12. A small portion of light guiding by means of Anti-resonant reflecting optical waveguide (ARROW) mechanism is also observed. The transmission dips, resulting from multimode interferences (MMI) and ARROW effect have a big difference in sensitivities to strain and temperature, thus making it possible to monitor these two parameters with a single sensor head by using a characteristic matrix approach. In addition, the proposed sensor structure is experimentally proven to have a good reproducibility.This study proposes a framework for describing a scene change using natural language text based on indoor scene observations conducted before and after a scene change. The recognition of scene changes plays an essential role in a variety of real-world applications, such as scene anomaly detection. Most scene understanding research has focused on static scenes. Most existing scene change captioning methods detect scene changes from single-view RGB images, neglecting the underlying three-dimensional structures. Previous three-dimensional scene change captioning methods use simulated scenes consisting of geometry primitives, making it unsuitable for real-world applications. click here To solve these problems, we automatically generated large-scale indoor scene change caption datasets. We propose an end-to-end framework for describing scene changes from various input modalities, namely, RGB images, depth images, and point cloud data, which are available in most robot applications. We conducted experiments with various input modalities and models and evaluated model performance using datasets with various levels of complexity. Experimental results show that the models that combine RGB images and point cloud data as input achieve high performance in sentence generation and caption correctness and are robust for change type understanding for datasets with high complexity. The developed datasets and models contribute to the study of indoor scene change understanding.
Mycobacteria of the
complex (MAC) pose a significant risk to zoological collections.
subspecies
(MAP) is a member of MAC and the causative agent of Johne's disease. Despite many reports in animals kept in zoological gardens, systemic surveillance has rarely been reported.
In this study, archived serum samples collected from animal species at the Wilhelma Zoological and Botanical Gardens in Stuttgart, Germany, were screened for the presence of antibodies against MAC and MAP. In addition, molecular investigations were performed on necropsy, fecal, and environmental samples.
In total, 30/381 serum samples of various mammalian species were positive for MAC antibodies in ELISA, while one sample of a reticulated giraffe (
) was positive in MAP-specific ELISA. Samples from many species were positive in pan-
real-time PCR (40/43 fecal samples, 27/43 environmental samples, and 31/90 necropsy samples). Surprisingly, no sample was positive in the MAP-specific molecular assays. However, two environmental samples from primate enclosures were positive in
subspecies
(MAH)-specific real-time PCR.
The results reveal serological indications of MAC infections in the zoological collection. However, the presence of a MAP-contaminated environment by a high-shedding individual animal or MAP-infected population is unlikely.
The results reveal serological indications of MAC infections in the zoological collection. However, the presence of a MAP-contaminated environment by a high-shedding individual animal or MAP-infected population is unlikely.Micronutrients are essential for plant growth and development, and important for human health nutrition and livestock feed. Therefore, the discovery of novel germplasm with significant variability or higher micronutrients content in crop seeds is critical. Currently, there is no information available on the effects of chromosome or chromosome arm substitution in cotton on cottonseed micronutrients. Thus, the objective of this study was to evaluate the effects of chromosome or chromosome arm substitution on the variability and levels of micronutrients B, Fe, Cu, Zn, Mn, and Ni in cottonseed from chromosome substitution (CS) cotton lines. Our hypothesis was that interspecific chromosome substitution in cotton can affect cottonseed micronutrients content, resulting in significant differences and variabilities of these nutrients among CS lines and between CS lines and the controls. Nine CS lines were grown in two-field experiments at two locations (in 2013 in South Carolina, USA; and in 2014 in Mississippi, USA).some segment pairs from the alien species. Chromosome substitution provides an effective means for upland cotton improvement by targeted interspecific introgression, yielding CS lines that facilitate trait discovery, such as seed micronutritional qualities, due to increased isogenicity and markedly reduced complexity from epistatic interactions with non-target alien chromosomes. The positive correlation between B, Cu, and Fe at both locations, between Ni and Mn, between Zn and Cu, and between Zn and Ni at both locations signify the importance of a good agricultural and fertilizer management of these nutrients to maintain higher cottonseed nutrient content.