Powerbowen9204

Z Iurium Wiki

In general the antibiotics tested showed only minor effects on transcriptional levels of Stx2a. Ciprofloxacin caused an increase of Stx production in all but two strains, while gentamicin, meropenem and azithromycin did not induce Stx production in any of the STEC strains examined. STEC O104H4 was the serotype that in greatest extent responded to antimicrobial exposure with an increase of stx2a transcription and Stx production.

Gentamicin, meropenem and azithromycin exposure did not result in elevated Stx production. We recommend that this finding is investigated further in the search for candidates for future antimicrobial treatment of STEC.

Gentamicin, meropenem and azithromycin exposure did not result in elevated Stx production. We recommend that this finding is investigated further in the search for candidates for future antimicrobial treatment of STEC.Regenerative therapies such as dental pulpal revascularization appear as an option for traumatized immature permanent teeth. However, the triple antibiotic paste - TAP (metronidazole, minocycline, and ciprofloxacin), used for these therapies, can generate cytotoxicity and dentin discoloration. In contrast, host defense peptides (HDPs) are promising antimicrobial and immunomodulatory biomolecules for dentistry. This study aimed to evaluate in vitro the antimicrobial activity (against Staphylococcus aureus and Enterococcus faecalis) and the immunomodulatory potential (by the evaluation of IL-1α, IL-6, IL-12, IL-10, TNF-α and NO, in RAW 264.7 macrophages and IL-6, TGF-β and NO, in L929 fibroblast) of synthetic peptides (DJK-6, IDR-1018, and IDR-1002), compared to TAP in an in vitro infection model containing heat-killed antigens from E. faecalis and S. aureus. Furthermore, the synergistic potential of ciprofloxacin and IDR-1002 was evaluated by checkerboard. Ciprofloxacin was the best antimicrobial of TAP, besides acting in synergism with IDR-1002. TAP was pro-inflammatory (p less then 0.05), while the association of ciprofloxacin and IDR-1002 presented an anti-inflammatory profile mainly in the presence of both heat-killed antigens (p less then 0.05). Based on these results, ciprofloxacin associated with IDR-1002 may demonstrate an efficient antimicrobial and immunomodulatory action in this in vitro model. Further in vivo studies may determine the real potential of this combination.

Periodontitis is a chronic inflammation resulting in destruction of tooth-supporting bone. Chronic inflammation is characterized by extravascular fibrin deposition. Fibrin is central to destruction of bone; monocytes bind to fibrin and form osteoclasts, thus providing a link between coagulation and the tissue destructive processes in periodontitis. The oral microbiome is essential to oral health. However, local ecological changes, such as increased biofilm formation, result in a dysbiotic microbiome characterized by an increase of protease-producing species e.g. Porphyromonas gingivalis. Proteases initiate inflammation and may cleave coagulation factors. Polyphosphates (polyP) may also provide bacteria with procoagulant properties similar to platelet-released polyP. P. gingivalis has also been found in remote locations related to vascular pathology and Alzheimer's disease.

The aim of this study was to investigate procoagulant activity of ten different species of oral bacteria present in oral health and disease as well as presence of polyP and fibrin formation in planktonic and biofilm bacteria.

Oral bacteria were studied for protease production and procoagulant activity. The presence of polyP and formation of fibrin was observed using confocal microscopy.

P. gingivalis showed strong protease activity and was the only species exerting procoagulant activity. Confocal microscopy showed polyP intracellularly in planktonic bacteria and extracellularly after biofilm formation. Fibrin formation emanated from planktonic bacteria and from both bacteria and polyP in biofilm cultures.

The procoagulant activity of P. gingivalis could explain its role in chronic inflammation, locally in oral tissues as well as in remote locations.

The procoagulant activity of P. gingivalis could explain its role in chronic inflammation, locally in oral tissues as well as in remote locations.Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii. Despite the importance of toxoplasmosis, there is no comprehensive strategy to control this disease. Hence, applying the new methods such as the poly-epitope vaccine can be successful. In the current project, to engineer a potent poly-epitope vaccine, 10 antigenic proteins including BiP, GRA1, GRA2, GRA5, MIC8, MIC13, P30, PI1, SOD and Rop2 were selected based on the database. Then, B cell, MHCI and MHCII epitopes of the selected antigenic proteins were isolated by the most accurate servers. The best predicted epitopes along with a molecular adjuvant were employed to engineer a poly-epitope vaccine. After engineering, different physicochemical features, secondary and tertiary structures, molecular docking of the designed vaccine were assessed. The results of this project revealed that the designed vaccine with 730 amino acids in length and molecular weight of 77.67 kDa was a soluble protein which could bind to its receptor with an energy of 6223.43. According to the achievements of this study, it seems the designed vaccine can be an appropriate candidate to apply.Three-dimensional (3D) porous zinc (Zn) with a moderate degradation rate is a promising candidate for biodegradable bone scaffolds. However, fabrication of such scaffolds with adequate mechanical properties remains a challenge. Moreover, the composition, crystallography and microstructure of the in vivo degradation products formed at or near the implant-bone interface are still not precisely known. Here, we have fabricated porous Fe@Zn scaffolds with skeletons consisting of an inner core layer of Fe and an outer shell layer of Zn using template-assisted electrodeposition technique, and systematically evaluated their porous structure, mechanical properties, degradation mechanism, antibacterial ability and in vitro and in vivo biocompatibility. selleck chemical In situ site-specific focused ion beam micromilling and transmission electron microscopy were used to identify the in vivo degradation products at the nanometer scale. The 3D porous Fe@Zn scaffolds show similar structure and comparable mechanical properties to human cancellous bone.

Autoři článku: Powerbowen9204 (Daugherty Herrera)