Postvognsen2536

Z Iurium Wiki

Plant shoot architectures also follow this design form, suggesting that two basic plant transport systems may use similar growth strategies.The local environment of the geographical origin of plants shaped their genetic variations through environmental adaptation. While the characteristics of the local environment correlate with the genotypes and other genomic features of the plants, they can also be indicative of genotype-phenotype associations providing additional information relevant to environmental dependence. In this study, we investigate how the geoclimatic features from the geographical origin of the Arabidopsis thaliana accessions can be integrated with genomic features for phenotype prediction and association analysis using advanced canonical correlation analysis (CCA). In particular, we propose a novel method called hierarchical canonical correlation analysis (HCCA) to combine mutations, gene expressions, and DNA methylations with geoclimatic features for informative coprojections of the features. HCCA uses a condition number of the cross-covariance between pairs of datasets to infer a hierarchical structure for applying CCA to combinets.Many newly observed phenotypes are first described, then experimentally manipulated. These language-based descriptions appear in both the literature and in community datastores. To standardize phenotypic descriptions and enable simple data aggregation and analysis, controlled vocabularies and specific data architectures have been developed. Such simplified descriptions have several advantages over natural language they can be rigorously defined for a particular context or problem, they can be assigned and interpreted programmatically, and they can be organized in a way that allows for semantic reasoning (inference of implicit facts). PROTAC tubulin-Degrader-1 Because researchers generally report phenotypes in the literature using natural language, curators have been translating phenotypic descriptions into controlled vocabularies for decades to make the information computable. Unfortunately, this methodology is highly dependent on human curation, which does not scale to the scope of all publications available across all of plant biology. Simultaneously, researchers in other domains have been working to enable computation on natural language. This has resulted in new, automated methods for computing on language that are now available, with early analyses showing great promise. Natural language processing (NLP) coupled with machine learning (ML) allows for the use of unstructured language for direct analysis of phenotypic descriptions. Indeed, we have found that these automated methods can be used to create data structures that perform as well or better than those generated by human curators on tasks such as predicting gene function and biochemical pathway membership. Here, we describe current and ongoing efforts to provide tools for the plant phenomics community to explore novel predictions that can be generated using these techniques. We also describe how these methods could be used along with mobile speech-to-text tools to collect and analyze in-field spoken phenotypic descriptions for association genetics and breeding applications.We report a root system architecture (RSA) traits examination of a larger scale soybean accession set to study trait genetic diversity. Suffering from the limitation of scale, scope, and susceptibility to measurement variation, RSA traits are tedious to phenotype. Combining 35,448 SNPs with an imaging phenotyping platform, 292 accessions (replications = 14) were studied for RSA traits to decipher the genetic diversity. Based on literature search for root shape and morphology parameters, we used an ideotype-based approach to develop informative root (iRoot) categories using root traits. The RSA traits displayed genetic variability for root shape, length, number, mass, and angle. Soybean accessions clustered into eight genotype- and phenotype-based clusters and displayed similarity. Genotype-based clusters correlated with geographical origins. SNP profiles indicated that much of US origin genotypes lack genetic diversity for RSA traits, while diverse accession could infuse useful genetic variation for these traits. Shape-based clusters were created by integrating convolution neural net and Fourier transformation methods, enabling trait cataloging for breeding and research applications. The combination of genetic and phenotypic analyses in conjunction with machine learning and mathematical models provides opportunities for targeted root trait breeding efforts to maximize the beneficial genetic diversity for future genetic gains.Plant phenotyping technologies play important roles in plant research and agriculture. Detailed phenotypes of individual plants can guide the optimization of shoot architecture for plant breeding and are useful to analyze the morphological differences in response to environments for crop cultivation. Accordingly, high-throughput phenotyping technologies for individual plants grown in field conditions are urgently needed, and MVS-Pheno, a portable and low-cost phenotyping platform for individual plants, was developed. The platform is composed of four major components a semiautomatic multiview stereo (MVS) image acquisition device, a data acquisition console, data processing and phenotype extraction software for maize shoots, and a data management system. The platform's device is detachable and adjustable according to the size of the target shoot. Image sequences for each maize shoot can be captured within 60-120 seconds, yielding 3D point clouds of shoots are reconstructed using MVS-based commercial software, and the phenotypic traits at the organ and individual plant levels are then extracted by the software. The correlation coefficient (R2) between the extracted and manually measured plant height, leaf width, and leaf area values are 0.99, 0.87, and 0.93, respectively. A data management system has also been developed to store and manage the acquired raw data, reconstructed point clouds, agronomic information, and resulting phenotypic traits. The platform offers an optional solution for high-throughput phenotyping of field-grown plants, which is especially useful for large populations or experiments across many different ecological regions.

Autoři článku: Postvognsen2536 (Dalby Duckworth)