Poolefarley7560

Z Iurium Wiki

preting serial changes in hydrocephalus.

This study aimed to evaluate the tumor doubling time of invasive lung adenocarcinoma according to the International Association of the Study for Lung Cancer (IASLC)/American Thoracic Society (ATS)/European Respiratory Society (ERS) histologic classification.

Among the 2905 patients with surgically resected lung adenocarcinoma, we retrospectively included 172 patients (mean age, 65.6 ± 9.0 years) who had paired thin-section non-contrast chest computed tomography (CT) scans at least 84 days apart with the same CT parameters, along with 10 patients with squamous cell carcinoma (mean age, 70.9 ± 7.4 years) for comparison. Three-dimensional semiautomatic segmentation of nodules was performed to calculate the volume doubling time (VDT), mass doubling time (MDT), and specific growth rate (SGR) of volume and mass. Multivariate linear regression, one-way analysis of variance, and receiver operating characteristic curve analyses were performed.

The median VDT and MDT of lung cancers were as follows acinar, 603.2 and 639.5 days; lepidic, 1140.6 and 970.1 days; solid/micropapillary, 232.7 and 221.8 days; papillary, 599.0 and 624.3 days; invasive mucinous, 440.7 and 438.2 days; and squamous cell carcinoma, 149.1 and 146.1 days, respectively. The adjusted SGR of volume and mass of the solid-/micropapillary-predominant subtypes were significantly shorter than those of the acinar-, lepidic-, and papillary-predominant subtypes. The histologic subtype was independently associated with tumor doubling time. A VDT of 465.2 days and an MDT of 437.5 days yielded areas under the curve of 0.791 and 0.795, respectively, for distinguishing solid-/micropapillary-predominant subtypes from other subtypes of lung adenocarcinoma.

The tumor doubling time of invasive lung adenocarcinoma differed according to the IASCL/ATS/ERS histologic classification.

The tumor doubling time of invasive lung adenocarcinoma differed according to the IASCL/ATS/ERS histologic classification.Placenta accreta spectrum (PAS) is an abnormal placental adherence or invasion of the myometrium or extrauterine structures. selleck kinase inhibitor As PAS is primarily staged and managed surgically, imaging can only guide and facilitate diagnosis. But, imaging can aid in preparations for surgical complexity in some cases of PAS. Ultrasound remains the imaging modality of choice; however, magnetic resonance imaging (MRI) is required for evaluation of areas difficult to visualize on ultrasound, and the assessment of the extent of placenta accreta. Numerous MRI features of PAS have been described, including dark intraplacental bands, placental bulge, and placental heterogeneity. Failure to diagnose PAS carries a risk of massive hemorrhage and surgical complications. This article describes a comprehensive, step-by-step approach to diagnostic imaging and its potential pitfalls.

We aimed to develop a deep neural network for segmenting lung parenchyma with extensive pathological conditions on non-contrast chest computed tomography (CT) images.

Thin-section non-contrast chest CT images from 203 patients (115 males, 88 females; age range, 31-89 years) between January 2017 and May 2017 were included in the study, of which 150 cases had extensive lung parenchymal disease involving more than 40% of the parenchymal area. Parenchymal diseases included interstitial lung disease (ILD), emphysema, nontuberculous mycobacterial lung disease, tuberculous destroyed lung, pneumonia, lung cancer, and other diseases. Five experienced radiologists manually drew the margin of the lungs, slice by slice, on CT images. The dataset used to develop the network consisted of 157 cases for training, 20 cases for development, and 26 cases for internal validation. Two-dimensional (2D) U-Net and three-dimensional (3D) U-Net models were used for the task. The network was trained to segment the lung parenchyma aved excellent performance in automatically delineating the boundaries of lung parenchyma with extensive pathological conditions on non-contrast chest CT images.Interstitial lung abnormalities (ILAs) are radiologic abnormalities found incidentally on chest CT that are potentially related to interstitial lung diseases. Several articles have reported that ILAs are associated with increased mortality, and they can show radiologic progression. With the increased recognition of ILAs on CT, the role of radiologists in reporting them is critical. This review aims to discuss the clinical significance and radiologic characteristics of ILAs to facilitate and enhance their management.

To assess the performance of content-based image retrieval (CBIR) of chest CT for diffuse interstitial lung disease (DILD).

The database was comprised by 246 pairs of chest CTs (initial and follow-up CTs within two years) from 246 patients with usual interstitial pneumonia (UIP, n = 100), nonspecific interstitial pneumonia (NSIP, n = 101), and cryptogenic organic pneumonia (COP, n = 45). Sixty cases (30-UIP, 20-NSIP, and 10-COP) were selected as the queries. The CBIR retrieved five similar CTs as a query from the database by comparing six image patterns (honeycombing, reticular opacity, emphysema, ground-glass opacity, consolidation and normal lung) of DILD, which were automatically quantified and classified by a convolutional neural network. We assessed the rates of retrieving the same pairs of query CTs, and the number of CTs with the same disease class as query CTs in top 1-5 retrievals. Chest radiologists evaluated the similarity between retrieved CTs and queries using a 5-scale grading system (5-almost identical; 4-same disease; 3-likelihood of same disease is half; 2-likely different; and 1-different disease).

The rate of retrieving the same pairs of query CTs in top 1 retrieval was 61.7% (37/60) and in top 1-5 retrievals was 81.7% (49/60). The CBIR retrieved the same pairs of query CTs more in UIP compared to NSIP and COP (

= 0.008 and 0.002). On average, it retrieved 4.17 of five similar CTs from the same disease class. Radiologists rated 71.3% to 73.0% of the retrieved CTs with a similarity score of 4 or 5.

The proposed CBIR system showed good performance for retrieving chest CTs showing similar patterns for DILD.

The proposed CBIR system showed good performance for retrieving chest CTs showing similar patterns for DILD.

Autoři článku: Poolefarley7560 (Skou Patterson)