Peterssonharrington2865

Z Iurium Wiki

In a proof-of-concept in vivo tumor regression study, the nanocomposite hydrogel was administered in a minimally invasive way at the periphery of the tumor by covering most of it. During the 21-day study, drastic tumor regression was recorded upon regular stimulation of nanocomposite hydrogel with simultaneous or individual external application of an electric field and NIR laser. Tumor cell death marker expression analysis uncovered the induction of apoptosis in tumor cells leading to its shrinkage. Heart ultrasound and histology revealed no cardiotoxicity associated with localized DOX treatment. To our knowledge, this is also the first report to show the simultaneous application of electric field and NIR laser in vivo for localized tumor therapy, and our results suggested that such strategy might have high clinical translational potential.Noncompressible torso hemorrhage accounts for a significant portion of preventable trauma deaths. We report here on the development of injectable, targeted supramolecular nanotherapeutics based on peptide amphiphile (PA) molecules that are designed to target tissue factor (TF) and, therefore, selectively localize to sites of injury to slow hemorrhage. Eight TF-targeting sequences were identified, synthesized into PA molecules, coassembled with nontargeted backbone PA at various weight percentages, and characterized via circular dichroism spectroscopy, transmission electron microscopy, and X-ray scattering. Following intravenous injection in a rat liver hemorrhage model, two of these PA nanofiber coassemblies exhibited the most specific localization to the site of injury compared to controls (p less then 0.05), as quantified using immunofluorescence imaging of injured liver and uninjured organs. To determine if the nanofibers were targeting TF in vivo, a mouse saphenous vein laser injury model was performed and showed that TF-targeted nanofibers colocalized with fibrin, demonstrating increased levels of nanofiber at TF-rich sites. Thromboelastograms obtained using samples of heparinized rat whole blood containing TF demonstrated that no clots were formed in the absence of TF-targeted nanofibers. DesferrioxamineB Lastly, both PA nanofiber coassemblies decreased blood loss in comparison to sham and backbone nanofiber controls by 35-59% (p less then 0.05). These data demonstrate an optimal TF-targeted nanofiber that localizes selectively to sites of injury and TF exposure, and, interestingly, reduces blood loss. This research represents a promising initial phase in the development of a TF-targeted injectable therapeutic to reduce preventable deaths from hemorrhage.Fast and facile coating strategies play a key role in surface engineering and functionalization of materials for various applications. Herein, we report a rapid and eco-friendly hair dyeing process for natural gray hair via the formation of metal-phenolic networks (MPNs). MPNs composed of gallic acid display high performance, and the coloration is tunable by varying the metal ion types. MPN-based hair dyeing is tolerant to repeated washing (at least 50 times) with detergent solution without color fading and can be discolored in acidic solution (pH less then 2). The mechanism of self-assembled MPNs for hair dyeing is investigated by Raman and UV-vis absorption spectroscopy. Cell studies in vitro and skin toxicity tests in vivo demonstrate the advantages (i.e., biocompatibility and hair regrowth) of MPNs for hair dyeing compared to p-phenylenediamine. The reported strategy for hair dyeing avoids the use of toxic substances present in common hair dyes and has negligible damage to the hair structures and tensile strength.The large amount of 4-nitrophenol (4-NP) wastewater produced by the chemical industry has received increased concern over the growing risk of environmental pollution. The ability to catalyze the reduction of highly concentrated 4-NP wastewater is highly desirable for the practical treatment of industrial wastewater, yet it remains a significant challenge. Herein, we report Pd nanoparticle-decorated 3D-printed hierarchically porous TiO2 scaffolds (Pd/TiO2 scaffolds) for the efficient reduction of highly concentrated 4-NP wastewater (2 g·L-1, ∼14.38 mM). The millimeter-sized interconnected channels in the scaffolds are conducive to rapid mass and ion transportation; meanwhile, the abundant micrometer- and nanometer-sized pores on the surface of the scaffolds offer adequate anchoring sites for Pd nanoparticles. The turnover frequency of the hierarchically porous Pd/TiO2 scaffold (16 layers) is up to 2.69 min-1, which is 1063 times higher than that of the Pd/TiO2-bulk material with the same size (0.00253 min-1). Importantly, no obvious deactivation of the catalytic activity is observed even after 20 cycles of catalytic reduction of 4-NP, showing excellent catalytic stability and reusability. Our strategy of loading the nanostructured catalyst on 3D-printable hierarchically porous structures put forward a flexible and versatile approach for boosting the catalytic performance of the catalysts, including catalytic activity, stability, and reusability, which can help promote their practical application in industry.A polyvinylidene fluoride (PVDF) hollow fiber membrane was fabricated through water-induced dope crystallization by allowing a facile spinning process delay (SPD) in the nonsolvent-induced phase separation (NIPS) process for direct contact membrane distillation (DCMD). The SPD was achieved by the addition of a small amount of water to the PVDF dope solution that was held in a closed container for a particular time. The crystalline property of the PVDF dope solution was investigated by differential scanning calorimetry. The obtained PVDF hollow fiber membranes were characterized with different techniques, including field emission scanning electron microscopy, X-ray diffraction, and the mechanical strength. Both the formation mechanism and properties were studied for the membranes with different SPD times. The results showed that macrovoid-inhibited PVDF membranes were obtained from 12 days of the SPD via the crystallization-dominated membrane formation process. The obtained membrane 4D-12 exhibited desirable membrane structure and properties for DCMD, which includes an improved liquid entry pressure of 2.25 bar, a surface water contact angle of 129°, a maximum pore size of 0.40 μm, and a mean pore size of 0.34 μm. The membrane 4D-12 possessed a twofold increase in both energy efficiency and permeate water flux in DCMD and stable permeate water flux and salt rejection through 224 h of continuous desalination operation. Compared to the commonly used approach by adding chemicals to the external coagulant, the SPD method provided a low-cost and environmentally friendly alternative to pursuing the macrovoid-free PVDF membranes for DCMD.Electrodeposition of metals is relevant to much of materials research including catalysis, batteries, antifouling, and anticorrosion coatings. The sacrificial characteristics of zinc used as a protection for ferrous substrates is a central corrosion protection strategy used in automotive, aviation, and DIY industries. Zinc layers are often used for protection by application to a base metal in a hot dip galvanizing step; however, there is a significant interest in less energy and material intense electroplating strategies for zinc. At present, large-scale electroplating is mostly done from acidic zinc solutions, which contain potentially toxic and harmful additives. Alkaline electroplating of zinc offers a route to using environment-friendly green additives. Within the scope of this study an electrolyte containing soluble zinc hydroxide compound and a polyquarternium polymer as additive were studied during zinc deposition on gold model surfaces. Cyclic voltammetry experiments and in-situ electrochemical quartz crystal microbalance with dissipation (QCM-D) measurements were combined to provide a detailed understanding of fundamental steps that occur during polymer-mediated alkaline zinc electroplating. Data indicate that a zincate-loaded polymer can adsorb within the inner sphere of the electric double layer, which lowers the electrostatic penalty of the zincate approach to a negatively charged surface. X-ray photoelectron spectroscopy also supports the assertion that the zincate-loaded polymer is brought tightly to the surface. We also find an initial polymer depletion followed by an active deposition moderation via control of the zincate diffusion through the adsorbed polymer.As one of the successful approaches to GaAs surface passivation, wet-chemical nitridation is applied here to relate the effect of surface passivation to carrier recombination processes in bulk GaAs. By combining time-resolved photoluminescence and optical pump-THz probe measurements, we found that surface hole trapping dominates the decay of photoluminescence, while photoconductivity dynamics is limited by surface electron trapping. Compared to untreated sample dynamics, the optimized nitridation reduces hole- and electron-trapping rate by at least 2.6 and 3 times, respectively. Our results indicate that under ambient conditions, recovery of the fast hole trapping due to the oxide regrowth at the deoxidized GaAs surface takes tens of hours, while it is effectively inhibited by surface nitridation. Our study demonstrates that surface nitridation stabilizes the GaAs surface via reduction of both electron- and hole-trapping rates, which results in chemical and electronical passivation of the bulk GaAs surface.The employment of self-assembly of soft materials has been accepted as an inexpensive, robust, and reliable patterning method. link2 As their self-assembly relies on the delicate molecular interactions near the substrate, a precise prediction/control of the interface structure and dynamics is critical to achieve desired nanostructures. Herein, a polymeric nanomosaic (PNM) pattern is created from the air/water interfacial self-assembly of a block copolymer (BCP) and introduced as an effective interfacial energy control for substrates. As a demonstration, the PNM coating is employed to control the BCP film structures. link3 The perpendicular orientation of BCP self-assembly, which requires neutral wetting conditions for both blocks, is difficult to achieve but can readily be obtained with the PNM coating upon a fine resolution of the pattern quality. The universal applicability of the PNM coating as an interfacial control has been confirmed on curved, flexible, and three-dimensional substrates. In addition, the PNM is introduced as an etching-free and reusable topcoat imparting free surface neutralization even for the high-χ BCP nanopatterning.Atomically thin metallic alloys are receiving increased attention due to their prospective applications as interconnects/contacts in two-dimensional (2D) circuits, sensors, and catalysts, among others. In this work, we demonstrate an easily scalable technique for the synthesis of 2D metallic alloys from their 3D quasicrystalline precursors. We have used aluminum (Al)-based single-phase decagonal quasicrystal Al66Co17Cu17 alloy to extract the corresponding 2D alloy structure. The 2D layered Al alloy possesses 2-fold decagonal quasicrystalline symmetry and consists of two- or three-layer-thick sheets with a lateral dimension of microns. These 2D metallic layers were combined with the atomic layers of tungsten disulfide to form the stacked heterostructures, which is demonstrated to be a stable and efficient catalyst for hydrogen evolution reaction.

Autoři článku: Peterssonharrington2865 (Vendelbo Holme)