Pattonhumphrey4878
th poor short-term and long-term outcomes.Microtubules form a major cytoskeleton and exhibit dynamic instability through the repetitive polymerization/depolymerization of tubulin dimers. Although microtubule stability should be precisely controlled to maintain various cellular functions, it has been difficult to assess its status in vivo. Here, we propose a tubulin fractionation method reflecting the stability of microtubules in mouse tissues. Analyses of tubulin fractionated by two-step of ultracentrifugation demonstrated three distinct pools of tubulin, that appeared to be stable microtubule, labile microtubule, and free tubulin. Using this method, we were able to show the specific binding of different microtubule-associated proteins onto each pool of microtubules. Also, there were clear differences in the population of stable microtubule among tissues depending on the proliferative capacity of the constituent cells. These findings indicate that this method is useful for broad analysis of microtubule stability in physiological and pathological conditions.Alkaliptosis is a recently discovered form of regulated cell death driven by intracellular alkalization. However, the immune characteristics and mechanisms of alkaliptosis are still poorly understood. Here, we show that HMGB1, a multifunctional alarm protein that drives innate immunity, is necessary for inflammation caused by alkaliptotic damage. During alkaliptosis, HMGB1 translocation and release from the nucleus to the cytoplasm to the extracellular space requires nuclear DNA damage signals, whereas the FANCD2-dependent (but not ATM-mediated) DNA repair pathway inhibits this process. Once released by alkaliptotic cancer cells, extracellular HMGB1 binds to the AGER receptor in macrophages and then activates the STING1 pathway to produce pro-inflammatory cytokines (e.g., TNF and IL6). Consequently, the pharmacological or genetic inhibition of the HMGB1-AGER-STING1 pathway limits cytokine production during alkaliptosis. These findings provide new insight into the sterile inflammatory response to cell death.The Kemp elimination reaction, involving the ring-opening of benzoxazole and its derivatives under the action of natural enzymes or chemical catalysts, has been of interest to researchers since its discovery. Because this reaction does not exist in all currently known metabolic pathways, the computational design of Kemp eliminases has provided valuable insights into principles of enzymatic catalysis. However, it was discovered that the naturally occurring promiscuous enzymes ydbC, xapA and ketosteroid isomerase also can catalyze Kemp elimination. Here, we report the crystal structure of ketosteroid isomerase (KSI) from Mycobacterium smegmatis MC2 155. MsKSI crystallizes in the P212121 space group with two molecules in an asymmetric unit, and ultracentrifugation data confirms that it forms a stable dimer in solution, consistent with the 1.9 Å-resolution structure. Our assays confirm that MsKSI accelerates the Kemp elimination of 5-nitrobenzoxazole (5NBI) with an optimal pH of 5.5. A 2.35 Å resolution crystal structure of the MsKSI-5NBI complex reveals that the substrate 5NBI is bound in the active pocket of the enzyme composed of hydrophobic residues. In addition, the Glu127 residue is proposed to play an important role as a general base in proton transfer and breaking weak O-N bonds to open the five-membered ring. This work provides a starting point for exploring the artificial modification of MsKSI using the natural enzyme as the backbone.
Medication administration is a main role of nurses, and by mastering this skill, medication errors can be reduced. Simulation provides a safe environment for learning and improving medication administration. Simulation design may influence the students' learning curve and ability to transfer skills into the clinical setting.
To examine the influence of simulation-based learning of the medication administration process, on satisfaction, self-perception of preparedness, and clinical performance of students who practice simulation either individually or in a group.
A comparative quasi-experimental study.
A public university in southern Israel.
Third-year nursing students in two consecutive academic years (78 in the individual sample and 50 in the group sample).
Nursing students participated in a scenario-based simulation for medication administration either individually or in a group. Self-reported questionnaires evaluated participants' satisfaction with the simulation experience, and perception of pess for medication administration. Individual simulation also impacts clinical performance, via preparedness. Further research is needed to identify other factors that facilitate skills transfer into the clinical setting.
Simulation improves students' preparedness for medication administration. Individual simulation also impacts clinical performance, via preparedness. Further research is needed to identify other factors that facilitate skills transfer into the clinical setting.Mimosa tenuiflora (Willd.) Poir. is widespread in southern and central American drylands, but little information is available concerning its associated rhizobia. Therefore, this study aimed to characterize M. tenuiflora rhizobia from soils of the tropical dry forests (Caatinga) in Pernambuco State, Brazil, at the molecular and symbiotic levels. Soil samples of pristine Caatinga areas in four municipalities were used to grow M. tenuiflora. First, the bacteria from root nodules were subjected to nodC/nifH gene amplification, and the bacteria positive for both genes had the 16S rRNA gene sequenced. Then, ten strains were evaluated using recA, gyrB, and nodC gene sequences, and seven of them had their symbiotic efficiency assessed. HSP990 order Thirty-two strains were obtained and 22 of them were nodC/nifH positive. Twenty strains clustered within Paraburkholderia and two within Rhizobium by 16S rRNA gene sequencing. The beta-rhizobia were similar to P. phenoliruptrix (12) and P. diazotrophica (8). Both alpha-rhizobia were closely related to R. miluonense. The recA + gyrB phylogenetic analysis clustered four and five strains within the P. phenoliruptrix and P. diazotrophica branches, respectively, but they were somewhat divergent to the 16S rRNA phylogeny. For Rhizobium sp. ESA 637, the recA + gyrB phylogeny clustered the strain with R. jaguaris. The nodC phylogeny indicated that ESA 626, ESA 629, and ESA 630 probably represented a new symbiovar branch. The inoculation assay showed high symbiotic efficiency for all tested strains. The results indicated high genetic diversity and efficiency of M. tenuiflora rhizobia in Brazilian drylands and included P. phenoliruptrix-like bacteria in the list of efficient beta-rhizobia in the Caatinga biome.Two bacterial strains were isolated from a marine sediment sample taken from Jingzi Wharf, Weihai, China. These two strains were characterized at the phenotypic, chemotaxonomic, and genomic level. The two strains possessed almost identical 16S rRNA gene sequences (99.9 %). However, RAPD-PCR fingerprint patterns discriminated that they were not from one clonal origin. The average nucleotide identity (ANI) value and the digital DNA-DNA hybridization (dDDH) value between the two strains were 98.3 % and 85.4 %, respectively, suggestingthat they belonged to the same species. On the basis of the result of phylogenetic analysis of the 16S rRNA gene sequences, the two strains belonged to the genus Salegentibacter and were closely related to S. holothuriorum KCTC 12371T (98.6 %) and S. salegens DSM 5424T (98.2-98.3 %). The ANI and dDDH clearly separated strains F63223T and F60176 from the the most related type strains with values below the thresholds for species. The genome sizes of strains F63223T and F60176 were approximate 3.89 and 3.59 Mbp, respectively. The strain F63223T had 3,335 predicted genes with DNA G + C content of 35.6 %. The major respiratory quinone was MK-6 and the major polar lipids were phosphatidylethanolamine and one unidentified lipid. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic classification and genome analysis, the two isolates could be considered to represent a novel species of the genus Salegentibacter, for which the name Salegentibacter maritimus sp. nov., is proposed, with F63223T (=MCCC 1H00433T = KCTC 82417T) as the type strain.The inhibitory activities of eight cytochrome P450 (CYP) isoenzymes for representative or suspected inhibitors of CYPs, including pesticides, were evaluated simultaneously using an in vitro cocktail incubation method to demonstrate the importance of systematic evaluation of CYP inhibitory risks in drug interaction (DI). Potent inhibition of CYP2B6 was noticeable for some azoles, including voriconazole. When voriconazole and cyclophosphamide were co-administered in mice, cyclophosphamide-induced alopecia and leukopenia were significantly suppressed by approximately 50% with increased blood concentrations of cyclophosphamide. The formation of an active metabolite of cyclophosphamide was suppressed effectively by voriconazole in the mouse liver microsomes. Surveys of adverse event reporting databases in Japan (JADER) and the U.S. (FAERS) showed that the proportional reporting ratios of neutropenia, hemorrhagic cystitis, and alopecia for cyclophosphamide, which is principally activated by CYP2B6 in humans, were mostly reduced, or tended to be reduced when azoles, including voriconazole, were prescribed in combination. It is highly likely that DIs between cyclophosphamide and azoles occur in the clinical setting. This study also suggests that more proper consideration of CYP2B6-mediated DIs is warranted. The combination of the in vitro cocktail method and a survey of adverse event reporting databases was a useful method to comprehensively detect pharmacokinetic DIs.Paraoxonase (PON) plays roles in the metabolism of organophosphate xenobiotics and drugs. Despite the importance of marmosets for research into drug metabolism and pharmacokinetics, marmoset paraoxonase has not yet been fully characterized. Consequently, we identified the PON1 gene in the marmoset genome by sequence homology analysis. Marmoset PON1 cDNA containing an open reading frame (1065 bp) was successfully cloned from marmoset liver by reverse transcription-polymerase chain reaction. The deduced amino acid sequence (355 amino acids) has approximately 93% identity with the human ortholog and contains important amino acid residues for substrate binding and calcium ion coordination. According to a phylogenetic tree of PON1 amino acid sequences constructed using data from seven animal species, marmoset PON1 is closer to human PON1 than it is to the PON1 orthologs of experimental animals such as pigs, rabbits, rats, and mice. Marmoset PON1 mRNA was predominantly expressed in liver among the five tissues examined. Marmoset PON1 protein secreted into plasma was detected by immunoblotting. The paraoxon-hydrolyzing activity in plasma was higher in marmosets than in humans. Based on these data, we concluded that marmoset and human PON1 have similar characteristics with regard to genomic structure, amino acid sequences, and tissue distribution.