Parkskirkpatrick0750
The superiority of IALNS is verified by numerical experiments on instances with different scales. check details Several critical factors were tested to determine the effects of coordinated traffic patrol; an example based on a real road network verifies the feasibility and applicability of the algorithm.To prevent unmanned aerial vehicles (UAVs) from threatening public security, anti-UAV object tracking has become a critical issue in industrial and military applications. However, tracking UAV objects stably is still a challenging issue because the scenarios are complicated and the targets are generally small. In this article, a novel long-term tracking architecture composed of a Siamese network and re-detection (SiamAD) is proposed to efficiently locate UAV targets in diverse surroundings. Specifically, a new hybrid attention mechanism module is exploited to conduct more discriminative feature representation and is incorporated into a Siamese network. At the same time, the attention-based Siamese network fuses multilevel features for accurately tracking the target. We further introduce a hierarchical discriminator for checking the reliability of targeting, and a discriminator-based redetection network is utilized for correcting tracking failures. To effectively catch up with the appearance changes of UAVs, a template updating strategy is developed in long-term tracking tasks. Our model surpasses many state-of-the-art models on the anti-UAV benchmark. In particular, the proposed method can achieve 13.7% and 16.5% improvements in success rate and precision rate, respectively, compared with the strong baseline SiamRPN++.The aim of this study was to determine which supervised machine learning (ML) algorithm can most accurately classify people with Parkinson's disease (pwPD) from speed-matched healthy subjects (HS) based on a selected minimum set of IMU-derived gait features. Twenty-two gait features were extrapolated from the trunk acceleration patterns of 81 pwPD and 80 HS, including spatiotemporal, pelvic kinematics, and acceleration-derived gait stability indexes. After a three-level feature selection procedure, seven gait features were considered for implementing five ML algorithms support vector machine (SVM), artificial neural network, decision trees (DT), random forest (RF), and K-nearest neighbors. Accuracy, precision, recall, and F1 score were calculated. SVM, DT, and RF showed the best classification performances, with prediction accuracy higher than 80% on the test set. The conceptual model of approaching ML that we proposed could reduce the risk of overrepresenting multicollinear gait features in the model, reducing the risk of overfitting in the test performances while fostering the explainability of the results.This paper proposes a learnable line encoding technique for bounding boxes commonly used in the object detection task. A bounding box is simply encoded using two main points the top-left corner and the bottom-right corner of the bounding box; then, a lightweight convolutional neural network (CNN) is employed to learn the lines and propose high-resolution line masks for each category of classes using a pixel-shuffle operation. Post-processing is applied to the predicted line masks to filtrate them and estimate clear lines based on a progressive probabilistic Hough transform. The proposed method was trained and evaluated on two common object detection benchmarks Pascal VOC2007 and MS-COCO2017. The proposed model attains high mean average precision (mAP) values (78.8% for VOC2007 and 48.1% for COCO2017) while processing each frame in a few milliseconds (37 ms for PASCAL VOC and 47 ms for COCO). The strength of the proposed method lies in its simplicity and ease of implementation unlike the recent state-of-the-art methods in object detection, which include complex processing pipelines.Osteoarthritis is a common musculoskeletal disorder. Classification models can discriminate an osteoarthritic gait pattern from that of control subjects. However, whether the output of learned models (probability of belonging to a class) is usable for monitoring a person's functional recovery status post-total knee arthroplasty (TKA) is largely unexplored. The research question is two-fold (I) Can a learned classification model's output be used to monitor a person's recovery status post-TKA? (II) Is the output related to patient-reported functioning? We constructed a logistic regression model based on (1) pre-operative IMU-data of level walking, ascending, and descending stairs and (2) 6-week post-operative data of walking, ascending-, and descending stairs. Trained models were deployed on subjects at three, six, and 12 months post-TKA. Patient-reported functioning was assessed by the KOOS-ADL section. We found that the model trained on 6-weeks post-TKA walking data showed a decrease in the probability of belonging to the TKA class over time, with moderate to strong correlations between the model's output and patient-reported functioning. Thus, the LR-model's output can be used as a screening tool to follow-up a person's recovery status post-TKA. Person-specific relationships between the probabilities and patient-reported functioning show that the recovery process varies, favouring individual approaches in rehabilitation.As a structural health monitoring (SHM) system can hardly measure all the needed responses, estimating the target response from the measured responses has become an important task. Deep neural networks (NNs) have a strong nonlinear mapping ability, and they are widely used in response reconstruction works. The mapping relation among different responses is learned by a NN given a large training set. In some cases, however, especially for rare events such as earthquakes, it is difficult to obtain a large training dataset. This paper used a convolution NN to reconstruct structure response under rare events with small datasets, and the main innovations include two aspects. Firstly, we proposed a multi-end autoencoder architecture with skip connections, which compresses the parameter space, to estimate the unmeasured responses. It extracts the shared patterns in the encoder and reconstructs different types of target responses in varied branches of the decoder. Secondly, the physics-based loss function, derived from the dynamic equilibrium equation, was adopted to guide the training direction and suppress the overfitting effect. The proposed NN takes the acceleration at limited positions as input. The output is the displacement, velocity, and acceleration responses at all positions. Two numerical studies validated that the proposed framework applies to both linear and nonlinear systems. The physics-informed NN had a higher performance than the ordinary NN with small datasets, especially when the training data contained noise.The use of electroencephalography (EEG) has recently grown as a means to diagnose neurodegenerative pathologies such as Alzheimer's disease (AD). AD recognition can benefit from machine learning methods that, compared with traditional manual diagnosis methods, have higher reliability and improved recognition accuracy, being able to manage large amounts of data. Nevertheless, machine learning methods may exhibit lower accuracies when faced with incomplete, corrupted, or otherwise missing data, so it is important do develop robust pre-processing techniques do deal with incomplete data. The aim of this paper is to develop an automatic classification method that can still work well with EEG data affected by artifacts, as can arise during the collection with, e.g., a wireless system that can lose packets. We show that a recurrent neural network (RNN) can operate successfully even in the case of significantly corrupted data, when it is pre-filtered by the robust principal component analysis (RPCA) algorithm. RPCA was selected because of its stated ability to remove outliers from the signal. To demonstrate this idea, we first develop an RNN which operates on EEG data, properly processed through traditional PCA; then, we use corrupted data as input and process them with RPCA to filter outlier components, showing that even with data corruption causing up to 20% erasures, the RPCA was able to increase the detection accuracy by about 5% with respect to the baseline PCA.The development of a machine's condition monitoring system is often a challenging task. This process requires the collection of a sufficiently large dataset on signals from machine operation, context information related to the operation conditions, and the diagnosis experience. The two referred problems are today relatively easy to solve. The hardest to describe is the diagnosis experience because it is based on imprecise and non-numerical information. However, it is essential to process acquired data to develop a robust monitoring system. This article presents a framework for a system dedicated to recommending processing algorithms for condition monitoring. It includes a database and fuzzy-logic-based modules composed within the system. Based on the contextual knowledge provided by the user, the procedure suggests processing algorithms. This paper presents the evaluation of the proposed agent on two different parallel gearboxes. The results of the system are processing algorithms with assigned model types. The obtained results show that the algorithms recommended by the system achieve a higher accuracy than those selected arbitrarily. The results obtained allow for an average of 5 to 14.5% higher accuracy.The QUIC protocol, which was originally proposed by Google, has recently gained a remarkable presence. Although it has been shown to outperform TCP over a wide range of scenarios, there exist some doubts on whether it might be an appropriate transport protocol for IoT. In this paper, we specifically tackle this question, by means of an evaluation carried out over a real platform. In particular, we conduct a thorough characterization of the performance of the MQTT protocol, when used over TCP and QUIC. We deploy a real testbed, using commercial off-the-shelf devices, and we analyze two of the most important key performance indicators for IoT delay and energy consumption. The results evince that QUIC does not only yield a notable decrease in the delay and its variability, over various wireless technologies and channel conditions, but it does not hinder the energy consumption.CNN extracts the signal characteristics layer by layer through the local perception of convolution kernel, but the rotation speed and sampling frequency of the vibration signal of rotating equipment are not the same. Extracting different signal features with a fixed convolution kernel will affect the local feature perception and ultimately affect the learning effect and recognition accuracy. In order to solve this problem, the matching between the size of convolution kernel and the signal (rotation speed, sampling frequency) was optimized with the matching relation obtained. Through the study of this paper, the ability of extracting vibration features of CNN was improved, and the accuracy of vibration state recognition was finally improved to 98%.Studies and systems that are aimed at the identification of the presence of people within an indoor environment and the monitoring of their activities and flows have been receiving more attention in recent years, specifically since the beginning of the COVID-19 pandemic. This paper proposes an approach for people counting that is based on the use of cameras and Raspberry Pi platforms, together with an edge-based transfer learning framework that is enriched with specific image processing strategies, with the aim of this approach being adopted in different indoor environments without the need for tailored training phases. The system was deployed on a university campus, which was chosen as the case study. The proposed system was able to work in classrooms with different characteristics. This paper reports a proposed architecture that could make the system scalable and privacy compliant and the evaluation tests that were conducted in different types of classrooms, which demonstrate the feasibility of this approach.