Papedowling5019

Z Iurium Wiki

Based on the phase-field theory, a multiple-relaxation-time (MRT) lattice Boltzmann model is proposed for the immiscible multiphase fluids. In this model, the local Allen-Chan equation is chosen as the target equation to capture the phase interface. Unlike previous MRT schemes, an off-diagonal relaxation matrix is adopted in the present model so that the target phase-field equation can be recovered exactly without any artificial terms. To check the necessity of removing those artificial terms, comparative studies were carried out among different MRT schemes with or without correction. Results show that the artificial terms can be neglected at low March number but will cause unphysical diffusion or interface undulation instability for the relatively large March number cases. selleck The present modified model shows superiority in reducing numerical errors by adjusting the free parameters. As the interface transport coupled to the fluid flow, a pressure-evolution lattice Boltzmann equation is adopted for hydrodynamic properties. Several benchmark cases for multiphase flow were conducted to test the validity of the present model, including the static drop test, Rayleigh-Taylor instability, and single rising bubble test. For the rising bubble simulation at high density ratios, bubble dynamics obtained by the present modified MRT lattice Boltzmann model agree well with those obtained by the FEM-based level set and FEM-based phase-field models.A fundamental paradigm in polymer physics is that macromolecular conformations in equilibrium can be described by universal scaling laws, being key for structure, dynamics, and function of soft (biological) matter and in the materials sciences. Here we reveal that during diffusion-influenced, nonequilibrium chain-growth polymerization, scaling laws change qualitatively, in particular, the growing polymers exhibit a surprising self-avoiding walk behavior in poor and θ solvents. Our analysis, based on monomer-resolved, off-lattice reaction-diffusion computer simulations, demonstrates that this phenomenon is a result of (i) nonequilibrium monomer density depletion correlations around the active polymerization site, leading to a locally directed and self-avoiding growth, in conjunction with (ii) chain (Rouse) relaxation times larger than the competing polymerization reaction time. These intrinsic nonequilibrium mechanisms are facilitated by fast and persistent reaction-driven diffusion ("sprints") of the active site, with analogies to pseudochemotactic active Brownian particles. Our findings have implications for time-controlled structure formation in polymer processing, as in, e.g., reactive self-assembly, photocrosslinking, and three-dimensional printing.We address the old and widely debated question of the spectrum statistics of integrable quantum systems, through the analysis of the paradigmatic Lieb-Liniger model. This quantum many-body model of one-dimensional interacting bosons allows for the rigorous determination of energy spectra via the Bethe ansatz approach and our interest is to reveal the characteristic properties of energy levels in dependence of the model parameters. Using both analytical and numerical studies we show that the properties of spectra strongly depend on whether the analysis is done for a full energy spectrum or for a single subset with fixed total momentum. We show that the Poisson distribution of spacing between nearest-neighbor energies can occur only for a set of energy levels with fixed total momentum, for neither too large nor too weak interaction strength, and for sufficiently high energy. By studying long-range correlations between energy levels, we found strong deviations from the predictions based on the assumption of pseudorandom character of the distribution of energy levels.Out-of-time-order correlators (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalization in interacting quantum many-body systems. It was recently argued that the expected exponential growth of the OTOC is connected to the existence of correlations beyond those encoded in the standard Eigenstate Thermalization Hypothesis (ETH). We show explicitly, by an extensive numerical analysis of the statistics of operator matrix elements in conjunction with a detailed study of OTOC dynamics, that the OTOC is indeed a precise tool to explore the fine details of the ETH. In particular, while short-time dynamics is dominated by correlations, the long-time saturation behavior gives clear indications of an operator-dependent energy scale ω_GOE associated to the emergence of an effective Gaussian random matrix theory. We provide an estimation of the finite-size scaling of ω_GOE for the general class of observables composed of sums of local operators in the infinite-temperature regime and found linear behavior for the models considered.We investigate a family of generalized Fokker-Planck equations that contains Richardson and porous media equations as members. Considering a confining drift term that is related to an effective potential, we show that each equation of this family has a stationary solution that depends on this potential. This stationary solution encompasses several well-known probability distributions. Moreover, we verify an H theorem for the generalized Fokker-Planck equations using free-energy-like functionals. We show that the energy-like part of each functional is based on the effective potential and the entropy-like part is a generalized Tsallis entropic form, which has an unusual dependence on the position and can be related to a generalization of the Kullback-Leibler divergence. We also verify that the optimization of this entropic-like form subjected to convenient constraints recovers the stationary solution. The analysis presented here includes several studies about H theorems for other generalized Fokker-Planck equations as particular cases.Buzz pollination is described using a mathematical model considering a billiard approach. Applications to a rough morphology of a typical poricidal anther of a tomato flower (Solanum lycopersicum) experiencing vibrations applied by a bumblebee (Bombus terrestris) are made. The anther is described by a rectangular billiard with a pore on its tip while the borders are perturbed by specific oscillations according to the vibrational properties of the bumblebee. Pollen grains are considered as noninteracting particles that can escape through the pore. Our results not only recover some observed data but also provide a possible answer to an open problem involving buzz pollination.Three-dimensional (3D) simulations of electron beams propagating in high-energy-density plasmas using the quasistatic Particle-in-Cell (PIC) code QuickPIC demonstrate a significant increase in stopping power when beam electrons mutually interact via their wakes. Each beam electron excites a plasma wave wake of wavelength ∼2πc/ω_pe, where c is the speed of light and ω_pe is the background plasma frequency. We show that a discrete collection of electrons undergoes a beam-plasma-like instability caused by mutual particle-wake interactions that causes electrons to bunch in the beam, even for beam densities n_b for which fluid theory breaks down. This bunching enhances the beam's stopping power, which we call "correlated stopping," and the effect increases with the "correlation number" N_b≡n_b(c/ω_pe)^3. For example, a beam of monoenergetic 9.7 MeV electrons with N_b=1/8, in a cold background plasma with n_e=10^26cm^-3 (450 g cm^-3 DT), has a stopping power of 2.28±0.04 times the single-electron value, which increases to 1220±5 for N_b=64. The beam also experiences transverse filamentation, which eventually limits the stopping enhancement.We discuss the Sherrington-Kirkpatrick mean-field version of a spin glass within the distributional zeta function method (DZFM). In the DZFM, since the dominant contribution to the average free energy is written as a series of moments of the partition function of the model, the spin-glass multivalley structure is obtained. Also, an exact expression for the saddle points corresponding to each valley and a global critical temperature showing the existence of many stables or at least metastable equilibrium states is presented. Near the critical point, we obtain analytical expressions of the order parameters that are in agreement with phenomenological results. We evaluate the linear and nonlinear susceptibility and we find the expected singular behavior at the spin-glass critical temperature. Furthermore, we obtain a positive definite expression for the entropy and we show that ground-state entropy tends to zero as the temperature goes to zero. We show that our solution is stable for each term in the expansion. Finally, we analyze the behavior of the overlap distribution, where we find a general expression for each moment of the partition function.Optimization plays a significant role in many areas of science and technology. Most of the industrial optimization problems have inordinately complex structures that render finding their global minima a daunting task. Therefore, designing heuristics that can efficiently solve such problems is of utmost importance. In this paper we benchmark and improve the thermal cycling algorithm [Phys. Rev. Lett. 79, 4297 (1997)PRLTAO0031-900710.1103/PhysRevLett.79.4297] that is designed to overcome energy barriers in nonconvex optimization problems by temperature cycling of a pool of candidate solutions. We perform a comprehensive parameter tuning of the algorithm and demonstrate that it competes closely with other state-of-the-art algorithms such as parallel tempering with isoenergetic cluster moves, while overwhelmingly outperforming more simplistic heuristics such as simulated annealing.We numerically investigate the spatial and temporal statistical properties of a dilute polymer solution in the elastic turbulence regime, i.e., in the chaotic flow state occurring at vanishing Reynolds and high Weissenberg numbers. We aim at elucidating the relations between measurements of flow properties performed in the spatial domain with the ones taken in the temporal domain, which is a key point for the interpretation of experimental results on elastic turbulence and to discuss the validity of Taylor's hypothesis. To this end, we carry out extensive direct numerical simulations of the two-dimensional Kolmogorov flow of an Oldroyd-B viscoelastic fluid. Static pointlike numerical probes are placed at different locations in the flow, particularly at the extrema of mean flow amplitude. The results in the fully developed elastic turbulence regime reveal large velocity fluctuations, as compared to the mean flow, leading to a partial breakdown of Taylor's frozen-field hypothesis. While second-order statistics, probed by spectra and structure functions, display consistent scaling behaviors in the spatial and temporal domains, the third-order statistics highlight robust differences. In particular the temporal analysis fails to capture the skewness of streamwise longitudinal velocity increments. Finally, we assess both the degree of statistical inhomogeneity and isotropy of the flow turbulent fluctuations as a function of scale. While the system is only weakly nonhomogenous in the cross-stream direction, it is found to be highly anisotropic at all scales.

Autoři článku: Papedowling5019 (Gross McNamara)