Ottehebert7088
Heterodyne interferometers with two opposite Doppler shift interference signals have been proposed for high-resolution measurement with high measurement speed, which can be used in the background of high-speed high-resolution measurement. However, a measurement error model for high-speed high-resolution heterodyne interferometers (HSHR-HIs) has not yet been proposed. We established a HSHR-HI measurement error model, analyzed the influence of beat frequency stability with a simplified optical structure, and then designed an offset-locked dual-frequency laser source with a digital control system to reduce the impact of beat frequency drift. Experiments were used to verify the correction of the measurement error model and the validity of the laser source. The results show that the new laser source has a maximum beat frequency range of 45 MHz, which shows the improvements in the measuring speed and resolution.Bone tissue is continuously remodeled by the coordinated action of osteoclasts and osteoblasts. Nuclear factor-activated T cells c1 (NFATc1) is a well-known transcription factor for osteoclastogenesis and transcriptionally activated by the c-Fos and nuclear factor-kappa B (NF-κB) signaling pathways in response to receptor activation of NF-κB ligand (RANKL). Since excessive RANKL signaling causes an increase of osteoclast formation and bone resorption, inhibition of RANKL or its signaling pathway is an attractive therapeutic approach to the treatment of pathologic bone loss. In this study, we show that an ethyl acetate fraction (LEA) from the shiitake mushroom, Lentinula edodes, inhibited RANKL-induced osteoclast differentiation by blocking the NFATc1 signaling pathway. We found that the water extract and its subsequent ethyl acetate fraction of L. edodes significantly suppressed osteoclast formation. Comparative transcriptome analysis revealed that LEA specifically downregulated a set of RANKL target genes, including Nfatc1. Next, we found that LEA suppresses Nfatc1 expression mainly through the inhibition of the transactivity of p65 and NFATc1. Moreover, treatment of LEA rescued an osteoporotic phenotype in a zebrafish model of glucocorticoid-induced osteoporosis. Collectively, our findings define an undocumented role of the shiitake mushroom extract in regulating bone development.In this work, expanded graphite/paraffin/silicone rubber composite phase-change materials (PCMs) were prepared by blending the expanded graphite (EG), paraffin wax (PW) and silicone rubber (SR) matrix. It has been shown that PW fully penetrates into the three dimensional (3D) pores of EG to form the EG/PW particles, which are sealed by SR and evenly embedded in the SR matrix. As a result of the excellent thermal stability of SR and the capillary force from the 3D pores of EG, the EG/PW/SR PCMs are found to have good shape stability and high reliability. After being baked in an oven at 150 °C for 24 h, the shape of the EG/PW/SR PCMs is virtually unchanged, and their weight loss and latent heat drop are only 7.91 wt % and 11.3 J/g, respectively. The latent heat of the EG/PW/SR composites can reach up to 43.6 and 41.8 J/g for the melting and crystallizing processes, respectively. The super cooling of PW decreased from 4.2 to 2.4 due to the heterogeneous nucleation on the large surface of EG and the sealing effect of the SR. Meanwhile, the thermal conductivity of the EG/PW/SR PCMs reaches 0.56 W·m-1·K-1, which is about 2.8 times and 3.73 times of pure PW and pristine SR, respectively. The novel EG/PW/SR PCMs with superior shape and thermal stabilities will have a potential application in heat energy storage and thermal interface materials (TIM) for electronic devices.We performed a systematic review and meta-analysis to study all published clinical trial interventions, determined the magnitude of whole-body hypertrophy in humans (healthy males) and observed the individual responsibility of each variable in muscle growth after resistance training (RT). Searches were conducted in PubMed, Web of Science and the Cochrane Library from database inception until 10 May 2018 for original articles assessing the effects of RT on muscle size after interventions of more than 2 weeks of duration. Specifically, we obtain the variables fat-free mass (FMM), lean muscle mass (LMM) and skeletal muscle mass (SMM). The effects on outcomes were expressed as mean differences (MD) and a random-effects meta-analysis and meta-regressions determined covariates (age, weight, height, durations in weeks…) to explore the moderate effect related to the participants and characteristics of training. One hundred and eleven studies (158 groups, 1927 participants) reported on the effects of RT for muscle mass. RT significantly increased muscle mass (FFM+LMM+SMM; Δ1.53 kg; 95% CI [1.30, 1.76], p less then 0.001; I2 = 0%, p = 1.00). Considering the overall effects of the meta-regression, and taking into account the participants' characteristics, none of the studied covariates explained any effect on changes in muscle mass. Regarding the training characteristics, the only significant variable that explained the variance of the hypertrophy was the sets per workout, showing a significant negative interaction (MD; estimate 1.85, 95% CI [1.45, 2.25], p less then 0.001; moderator -0.03 95% CI [-0.05, -0.001] p = 0.04). selleck kinase inhibitor In conclusion, RT has a significant effect on the improvement of hypertrophy (~1.5 kg). The excessive sets per workout affects negatively the muscle mass gain.Identification of p73 as a structural homolog of p53 fueled early studies aimed at determining if it was capable of performing p53-like functions. This led to a conundrum as p73 was discovered to be hardly mutated in cancers, and yet, TAp73, the full-length form, was found capable of performing p53-like functions, including transactivation of many p53 target genes in cancer cell lines. Generation of mice lacking p73/TAp73 revealed a plethora of developmental defects, with very limited spontaneous tumors arising only at a later stage. Concurrently, novel TAp73 target genes involved in cellular growth promotion that are not regulated by p53 were identified, mooting the possibility that TAp73 may have diametrically opposite functions to p53 in tumorigenesis. We have therefore comprehensively evaluated the TAp73 target genes identified and validated in human cancer cell lines, to examine their contextual relevance. Data from focused studies aimed at appraising if p53 targets are also regulated by TAp73-often by TAp73 overexpression in cell lines with non-functional p53-were affirmative.